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Abstract

Aircraft safety has improved steadily over the last few decades. While much of this improvement

can be attributed to the introduction of advanced automation in the cockpit, the growing

complexity of these systems also increases the potential for the pilots to become confused about

what the automation is doing. This phenomenon, often referred to as mode confusion, has been

involved in several accidents involving modern aircraft. This report describes an effort by

Rockwell Collins and NASA Langley to identify potential sources of mode confusion through

two complementary strategies. The first is to create a clear, executable model of the automation,

connect it to a simulation of the flight deck, and use this combination to review of the behavior

of the automation and the man-machine interface with the designers, pilots, and experts in human

factors. The second strategy is to conduct mathematical analyses of the model by translating it

into a formal specification suitable for analysis with automated tools. The approach is illustrated

by applying it to a hypothetical, but still realistic, example of the mode logic of a Flight

Guidance System.
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Chapter 1

Introduction

Aircraft safety has improved steadily over the last few decades [23]. While much of this

improvement can be attributed to the introduction of advanced automation in the cockpit [2], the

growing complexity of these systems also increases the potential for the pilots to become

confused about what the automation is doing. Of particular concern is the proliferation of modes

in these systems, where modes are defined as mutually exclusive sets of system behavior [13].

For this reason, the phenomenon is often referred to as "mode confusion".

There is a growing body of evidence that mode confusion is a legitimate concern in complex

automated systems in which humans play a significant role. Several accidents and incidents

involving mode confusion in modern aircraft are listed in [9]. A study conducted by the

Massachusetts Institute of Technology found 184 incidents attributed to mode awareness

problems in NASA's Aviation Safety Reporting System (ASRS) [9]. In [8], the author describes

the concerns of pilots and researchers with the human computer interface in modern "glass

cockpits". The FAA recently hosted a workshop on Autoflight Mode Awareness that identified

"autoflight mode confusion as a significant safety concern" [1]. In [2], Charles Billings writes

(pg. 183):

Most of our accidents can be traced to the human operators of the systems, and increasing

numbers can be traced to the interactions of humans with automated systems.

This paper describes an effort by Rockwell Collins and NASA Langley to identify potential

sources of mode confusion through modeling and analysis of the automation. This approach

makes use of two complementary strategies. The first is to create a clear, executable model of the

automation, connect it to a simulation of the flight deck, and use this combination to review of

the behavior of the automation and the man-machine interface with engineers, the pilots, and

experts in human factors. This has several benefits. First, it forces the designers to commit to a

clear, conceptual model of the automation. Second, it facilitates discussion between the system

designers, experts in human factors, and the flight crew. Third, can be used in training to convey

an accurate mental model of the automation to the flight crew.

The second strategy is to conduct mathematical analyses of the model. This is accomplished by

translating the model into a formal specification suitable for analysis with automated tools. This

model can be used to show that safety properties hold for all states reachable by the model. It is

also possible to characterize some sources of mode confusion as mathematical statements about

the model and use these tools to automatically find these potential sources.



The approach is illustrated by applying it to an example specification of the mode logic of a

Flight Guidance System created by Collins to investigate different methods of modeling

requirements. While this example is hypothetical and does not describe an actual aircraft in

service, it is still complex enough to serve as a realistic exunple [15].

The rest of this report is organized as follows. Chapte" 2 provides background information,

including a brief description of related work and an cverview of Flight Control Systems.

Chapter 3 discusses the motivation behind this project and provides an overview of the approach.

Chapter 4 discusses the rationale for the structure of the mode logic, illustrates the behavior of

the model, and describes potential sources of mode confusion found in the example. Chapter5

describes the formal model of the mode logic created in PVS, while Chapter 6 discusses some of

the properties proven about this model. Finally, Chapter 7 summarizes conclusions and identifies
possible future directions.



Chapter 2

Background

This chapter describes related work, provides a brief overview of a Flight Guidance System

(FGS), and discusses the history of the FGS used as the example in this report.

2.1 Related Work

In [12], Nancy Leveson describes how operators create mental models of a system in order to

understand and predict its responses to their inputs and the environment. Mode confusion is a

discrepancy between the operators perceived and actual state of the automation, either due to a

faulty mental model (i.e., a mental model that is not an accurate abstraction of the system) or due

to the operator losing track of the state of the automation. In either case, the outcome can be one

or more inappropriate commands to the system.

Leveson also points out how different individuals may form different mental models of the

automation, based on their experiences and needs. For example, the designer may form a mental

model based on mathematical models appropriate for situations where important decisions need

not be made quickly, while the operator may form a mental model that emphasizes making

diagnoses and responses quickly.

In [13], Leveson, et.al., discuss an approach to detecting error-prone automation features through

modeling and analysis of the software. They also identify six categories of design that have

historically been sources of mode confusion:

1. Interface interpretation errors

2. Inconsistent behavior

3. Indirect mode changes

4. Operator authority limits

5. Unintended side effects

6. Lack of appropriate feedback

The importance of an accurate mental model of avionics systems by the flight crew has been

recognized by several researchers. Charles Billings argues for human-centered automation

designed to work cooperatively with pilots and air traffic controllers in the pursuit of stated

objectives [2]. While acknowledging that automation has done much to make aircraft safer, he

points out that new classes of problems have emerged due to failures in the human-machine

interface. He states (pg. 4):
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In particular, we have seen the appearance of incidents and accidents that indicate

failures to understand automation behavior. We have seen errors in choice of operating

modes, lack of mode awareness, and inability to determine what the automation was

doing.

Billings also identifies some of the sources of mode confusion. These include;

1. Complexity (particularly in the number of modes and interactions between modes)

2. Brittleness (inability to respond correctly at the margins of the operating range)

3. Opacity (inadequate display of what the automation is doing)

4. Literalism (inability to respond correctly to unanticipated situations)

5. Training (lack of training of automation behavior)

This last point emphasizes the need to convey to the pilot an accurate mental model of the

automation. On (pg. 146), he states;

An adequate internal model of an automated system is vital to a pilot's ability to predict

how that system will function under novel circumstances.

Other researchers have concurred on this point. In [20], Smer and Woods write:

What is needed is a better understanding of how the machine operates, not just how to

operate the machine.

Of particular concern seems to be the modes that control t3ae vertical behavior of the aircraft. An

MIT study described in [9] examined 184 incidents attributable to mode awareness problems

found in NASA's Aviation Safety Reporting System (ASRS). They found that 74% of the errors

involved confusion in vertical navigation, while only 26% involved horizontal navigation. The

researchers attribute this to lack of appropriate feedback ,:_n vertical navigation. Another major

factor is the greater complexity of vertical navigation, which involves different combination of
elevator and thrust controls.

Tony Lambregts, the FAA National Resource Specialist fc r Automated Controls, agrees that the

interaction of elevator and thrust controls for vertical navigation is an important source of mode

confusion, but argues that the problem is not so much lack of consideration of human factors as

adherence to outdated designs [11]. Flight Control Syslems have evolved from the earliest

designs of the Wright brothers through the gradual introduction of new control functions, where

the control laws are based on single input single output (S [SO) designs. For example, control of

the Autopilot and Autothrottle are not tightly integrated at the innermost level. Instead, this

integration is achieved at higher levels in the Flight Control System. Lambregts argues that since

the response of the aircraft to pitch and thrust commands a:-e inherently coupled by the dynamics

of flight, this results in a proliferation of modes in order to achieve the desired behavior. By

integrating control for inherently coupled functions throu ;h the use of multiple input multiple
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output(MIMO) controllaws,heclaimstheFlight ControlSystemcanbegreatlysimplified,with
asubstantialreductionin systemmodesandpotentialfor modeconfusion.

2.2 An Overview of Flight Guidance Systems

A Flight_Guidance System (FGS) is a component of the overall Flight Control System (FCS)

(see Figure 1). The FGS compares the measured state of an aircraft (position, speed, and attitude)

to the desired state and generates pitch and roll guidance commands to minimize the difference

between the measured and desired state. When engaged, the Autopilot translates these

commands into movement of the aircraft's control surfaces necessary to achieve the commanded

changes about the lateral and vertical axes.

An FGS can be further broken down into the mode logic and the flight control laws. The mode

logic accepts commands from the flight crew, the Flight Management System (FMS), and

information about the current state of the aircraft to determine which system modes are active.

The active modes in tum determine which flight control laws are used to generate the pitch and

roll guidance commands. The active lateral and vertical modes are displayed (annunciated) to

the flight crew on the Flight Director, a portion of the Electronic Flight Instrumentation System

(EFIS). The magnitude and direction of the lateral (roll) and vertical (pitch) commands

generated by the FGS are also displayed on the EFIS as guidance cues.

Flight

Management

System

I
Crew

Selections

FGS

I
I

l
l

Crew Interface I

T Crew
Indications

Mode Logic

Control Laws

Roll
Pitch

Measured State

I I I

Sensor Data ]

Flight

Director

(EFIS)

Autopilot

Actuator [ Control
Commands _ Surfaces

Figure 1 - Flight Control System



2.3 The Example Flight Guidance System

The approach described in this report was investigated using an example specification of the

mode logic of a Flight Guidance System for a business jet/commuter class aircraft. This example

was created by Collins to investigate different techniques for requirements modeling and

analysis. The original specification was created using the CoRE methodology and has been

placed in the public domain. It is fully described in [15]. Since that time, the same example has

been translated into Z [5], SMV [17], SCR [16], T-VEC 113], and now ObjecTime [21] and PVS

[18]. When determining how to model specific features in ObjecTime and PVS, the original
CoRE specification [15] was used as the standard of "correct" behavior.

The original specification was an example derived through study of several Flight Guidance

Systems. Moreover, to keep the size of the example tractable, it was simplified in several ways.

First, it was restricted to specifying only the mode logic of the FGS. Second, several more

complex features found in recent aircraft, such as the more complex vertical navigation modes,

were omitted. Third, the example deals almost entirely with "normal" behavior and does not

specify how the system should respond to internal errors such as failed sensors. Finally, the

example does not specify the hardware interfaces (i.e., the CoRE input and output variables and

the IN and OUT relations). Despite these limitations, the specification is sufficiently rich that it

meets the goal of providing a realistic industrial example for the evaluation of other methods,

including those described in this report. However, it is important to note that it does not describe

an actual or planned Collins product.
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Chapter 3

Overview of the Approach

3.1 Motivation

This project was motivated by several goals. These included creating a high level, dynamic

model of the automation's behavior, performing automated analyses of this model, and

supporting a product family approach to development. In some cases, these goals were in

conflict and decisions had to be made regarding which were most important. These issues are

discussed more fully in the following sections.

3.1.1 Visualization of the Automation

The main objective of this project was to provide a clear, comprehensible view of the underlying

automation that could be executed. Our belief was that connecting this model to a mock-up of

the Flight Control Panel (FCP) and the Electronic Flight Instrumentation System (EFIS) would

provide a common focus that would promote discussion between pilots, experts in human

factors, and the system designers. Our experiences to date have shown that, if anything, we

underestimated the power of this technique. In every demonstration, the visualization has

generated vigorous, positive debate between these groups.

A secondary objective was to force the development and commitment to a high level design of

the automation. In projects developed without such a vision, design choices may be based on

local concerns, such as fixing the immediate problem at hand or achieving a certain level of

performance. This often results in unnecessary complexity that is confusing to both the users and

developers of the system. Moreover, this complexity tends to grow as the system evolves over

time. Having a clear, high level model of the automation encourages the developers (and

customers) to make changes consistent with this model as time progresses.

Finally, we were interested in whether such a dynamic, high level model of the automation

would be of value during training of the flight crew. Would the availability of such a model

enable the flight crew to obtain a better mental model of the automation? Would it allow them to

internalize patterns so that they would be better able to predict the behavior of the system? For

existing systems, could such models be used to explain confusing behavior more clearly? Or

would the availability of such models simply add more complexity to pilots already
overwhelmed with details?

Of course, this doesn't exclude explicitly stating the design guidelines. In fact, they may be easier to state in the
presence of a high level model.
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3.1.2 Support for Automated Analysis

The value of automated analysis of properties such as consistency and certain forms of

completeness has been clearly demonstrated in a number of different tools [6], [7], [16]. Other

projects have shown how application specific properties, such as safety properties or desirable

system behaviors, can be verified through the use of theorem provers [18], [14], and model

checkers [17]. However, there are very few examples of using these techniques to check for

properties related to human factors. For example, responding differently to a button press in

different modes may not be an error, but it would be nice to know where such behavior is present

in a model. The most interesting questions here are how such properties can be stated in a formal

system and what sorts of properties relevant to huma_a factors are amenable to automated

analysis. Obtaining a least a partial answer to these questions was another important goal.

3.1.3 Support for Product Families

Finally, if complex systems are to be affordable, planning for change and reuse has to play a

larger role in the future. Companies typically build variations of the same products over and over

and are looking for strategies that support the systematic reuse of common artifacts.

One such approach is Product Family Engineering, also k-aown as Domain Engineering. Product

Family Engineering is a methodology that focuses on creating software and hardware assets that

can be systematically reused in each new member of the product family [4], [22], [24]. Central to

the Product Family approach is the development of a domain architecture. The domain

architecture consists of those requirements, design, implementation, and verification artifacts that

are common to all members of the family and the variatiens of these artifacts that are supported

by the domain. New instances of the product family (applications) are created by selecting from

the assets already available and supplementing and tailoring them as needed to create a specific

product. New product specific artifacts are carefully factored back into the domain architecture
to enrich the base of available assets.

Prior to this project, Collins had conducted a Commonality Analysis [24] of the FGS mode logic

described in [15] and developed a tentative producl family architecture for the FGS.

Consequently, an important goal of this project was to bu ld on that work and develop a formal
model consistent with that architecture.

3.1.4 Logistics

Finally, experience with previous demonstrations had con,_inced us that we wanted a very stable,

portable demonstration that we could pick up and take any A,here at a moment's notice. To ensure

widespread availability of the work products, we wanted t 9 avoid the use of proprietary tools or

components that were not available to the general publi,:. We also realized having sufficient

screen area to display both the visualization of the automalion and the mockup of the flight deck
would be essential.



3.2 Approach

The approach taken in this project directly addressed the issues raised in the previous section and

is illustrated in Figure 2. Executable model were used to drive visualizations of both the Flight

Deck (i.e., the Flight Control Panel and the EFIS) and the internal state behavior of the
automation. Formal models were derived from the executable models and used for formal

analysis with a theorem prover. This approach is discussed in greater detail in the following
sections.

I Analysis via
Theorem Prover

I PVS
Model

I Executable
Model

J
Visualization

of Internal States

Figure 2 - Overall Strategy

3.2.1 Visualizations

ObjecTime [21] was chosen as the modeling environment since the ObjecTime models could be

executed and easily connected to visualizations of the Flight Control Panel and EFIS. ObjecTime

also has a Statecharts-like capability for visualizing the behavior of the models that we hoped

could be used directly in demonstrations. Finally, we were confident that ObjecTime was

compatible with the product family architecture previously developed for the FGS.



The visualizations of the Flight Control Panel and the Elzctronic Flight Instrumentation System

were among the simplest part of the project to
create. Ours were created using Borland Delphi 2.

The visualization of the Electronic Flight

Instrumentation System (EFIS) is shown in Figure

3. The EFIS is the primary flight display in the

cockpit. It displays essential information about the

aircraft, such as airspeed, vertical speed, attitude

information, the horizon line, and heading.

Particularly relevant for this project are the flight

mode annunciations at the top of the display (e.g.,

HDG and PTCH), the AP engaged annunciation

located at the upper left of the sky/ground ball,

and the guidance cues shown in the center of the

sky/ground ball. The combination of the flight

mode annunciation and the guidance cues are

often referred to as the Flight Director. Only the

mode annunciations and the guidance cues needed

to be active components of the EFIS visualization

for this project.

The visualization of the Flight Control Panel is

shown in Figure 4. The Flight Control Panel is the

primary user interface with the Flight Control Figure 3- EFIS

System. It includes switches for turning the Flight

Director on and off (FD), switches for selecting

the different flight modes such as vertical speed (VS), 1,:teral navigation (NAV), heading hold

(HDG), altitude hold (ALT), and approach (APPR), the Vertical Speed/Pitch Wheel, and the

autopilot disconnect bar. The FCP also supplies feedback to the crew, indicating selected modes

by lighting lamps on either side of a selected mode' s button.

Figure 4 - Hight Control Panel

2Borland Delphi is a trademarkof the Inprise Corporation.
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As the project progressed, it became clear that the ObjecTime diagrams were too cluttered with

design detail to use for communication with pilots and experts in human factors. This was easily

remedied by creating our own visualization of the automation and using the ObjecTime models

to drive it as well as the FCP and EFIS visualizations. An example of this visualization is shown

in Figure 5. High level views of the mode machines for the Flight Director, Autopilot, and each

of the lateral and vertical flight modes are shown. The current mode of each mode machine is

indicated by turning the mode a bright green (shown here as white). For example, in Figure 5 the

Flight Director is in state Cues On, the Autopilot is in state Engaged, the lateral navigation

(NAV) mode is in state Armed, the vertical speed (VS) mode is in state Active, and all other

lateral and vertical modes are in the state Cleared. Certain states are distinguished as active

states. When in these states, the associated mode is also said to be active and generates the pitch

and roll guidance commands used as inputs to the autopilot and the flight director. Stated

differently, if the Autopilot is engaged, the active lateral mode generates roll guidance

commands and the active vertical mode generates pitch guidance commands used to control the

aircraft. Active states are indicated on the visualization by a heavy red box (shown here as a gray

box) around the state or group of states. A few of the active states in Figure 5 include the Active

Figure 5 - Visualization of the FGS Modes
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stateof Roll mode, the Armed and Track states of lateral Approach mode, and the Track state of

vertical Approach mode. As will be discussed later, onl) one lateral and one vertical mode can

be active at any given time. This property is emphasized in the visualization by placing the

active lateral states directly below each other. The active vertical states are laid out in a similar

fashion. In Figure 5, the active lateral mode is NAV and the active vertical mode is VS.

Having the capability of designing our own visualization of the automation turned out to be a

significant advantage. Since our focus was on conveying a very high level mental model, we

ended up removing details that obscured that model, but that would be necessary to fully specify

the system. Also, reviewers began suggesting changes to the model specifically for the purpose

of conveying the mental model, e.g., changing the color of all transitions just executed and

graying out transitions that were not possible. This made it clear that designing mental models of

the automation is an open area for further work.

3.2.2 Support for Automated Analysis

PVS was chosen for analyzing our models for application specific properties because it provides

a very powerful and general mechanism for stating and proving properties [18]. Also, we had

considerable in-house expertise with PVS from previous projects [14]. There was also previous

work done on translating ObjecTime models to PVS that gave us hope that we would be able to

automatically generate PVS specifications from ObjecTime [10].

Automatically generating PVS specifications from the ObjecTime models turned out to more

difficult than we had anticipated. While there was a fairly straightforward mapping from

individual ObjecTime actors to PVS specifications, thest: were of limited value unless a PVS

model was also created for the ObjecTime run-time sysr.em. For example, the details of how

events are sent, queued, and processed by actors are implicitly defined by the ObjecTime run-

time system. We decided that creating a PVS model of th_s infrastructure was beyond the scope

of the project.

Instead, we created PVS specifications by hand of the m,_de logic and reviewed them to try to

ensure the PVS and ObjecTime models defined the same b_havior. While it is true that this broke

the automated link between the ObjecTime and PVS mtxlels and that proofs completed for the

PVS model may not be true of the ObjecTime model, it w_.s still sufficient to explore the sorts of

properties that can be formally stated and verified, which was our original goal.

3.2.3 Support for Product Families

As discussed in Section 3.1.3, the cornerstone of Product Family engineering is developing an

architecture that supports the variation found in the famil ¢. To determine what variations were

common in Flight Guidance Systems, Collins had earlier conducted a Commonality Analysis of

several FGS systems [24]. This revealed that one of the most common variations was the

configuration of operational modes. Both the complement ,Jf operational modes installed and the

versions of individual modes varied from aircraft to aircraft:. Thus, one aircraft might have lateral
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backcoursemodeandthenextaircraftmightnot. Two aircraftmightbothhavelateralnavigation
modes,but haveslightlydifferent versionsof thatmode.

However,therewerealso manypropertiescommonto all aircraft.In the systemsstudied,every
modewaseither a lateralmodethat controlledtheaircraftaboutthe roll axisor avertical mode
that controlledthe aircraft aboutthe pitch axis.Every modecould eitherbe activeor inactive.
Therecould neverbe more thanone lateralmodeactiveat any time, andtherecould neverbe
morethanoneverticalmodeactiveat anytime. If theFlight Directorwasturnedon,onelateral
mode and one vertical mode had to be active.Therewas alwaysa default lateral mode and
defaultvertical modethat becameactivewhenthe Flight Director wasturnedon or when the
activelateralor verticalmodewasmadeinactive.

To exploit this commonality and support this variation, this project adopted an architecture for

the Flight Guidance System that made it straightforward to produce different configurations of

operational modes. This architecture is described in detail in Chapter 4.
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Chapter 4

Structure of Mode Logic

The chapter provides an informal, intuitive presentation of the FGS mode logic. Since the

architecture of the FGS also affects presentation of the mode logic, it first discusses the rational

for this architecture. It then describes the behavior of the mode logic with a few examples. These

are typical of scenarios that can explored with the design engineers, the flight crew, and human

factor experts using the executable model and the visualizations. Finally, a few potential sources
of mode confusion found in the example FGS specification [15] are shown to demonstrate the

effectiveness of combining an executable model of the automation with the visualizations.

4.1 Rational for the FGS Architecture

As discussed in Chapter 3, support for a family of Flight Guidance Systems was one of the

primary factors in selecting the FGS architecture shown in Figure 6. At the lowest level, each

operational mode is treated as its own unit of functionality, with no knowledge of the properties,

or even the existence, of the other modes within the FGS. Each operational mode exports an

indication of whether it is active, whether it is armed, and if it is active, the guidance command

(roll for lateral modes and pitch for vertical modes) that it is computing. The lateral modes are

grouped into the Lateral Guidance component and the vertical modes are grouped into the
Vertical Guidance component.

The Lateral Guidance component enforces all constrahts between the lateral modes. For

example, it ensures that one lateral mode is active when th,,• Flight Director is on and ensures that

no more than one lateral mode is ever active. Any aircraft _pecific constraints between the lateral

modes are also enforced by Lateral Guidance. Lateral Gu{dance also exports the identify of the

current active lateral mode, the identity of all armed lateral modes, and the lateral guidance
command generated by the active lateral mode. Vertical Guidance serves a similar function for

the vertical modes, while the Flight Director componert maintains the status (on, off, cues

displayed, cues hidden) of the Flight Director.

All of these are grouped within the Flight Guidance coraponent. Flight Guidance exports the

status of the Flight Director, the identity of the current active lateral and vertical modes, the

identity of all armed lateral and vertical modes, and the lateral and vertical guidance commands.

Flight Guidance also enforces constraints between the Flight Director and the Lateral and

Vertical Guidance components. For example, it ensures th at one lateral mode and vertical mode

are active when the Flight Director is turned on. It al_o enforces any constraints between

components that are aircraft specific. For example, a common constraint is that lateral Go

Around (GA) mode is active if, and only if, vertical Go Around mode is active
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Flight Guidance

Exports Flight Director Status, Active and Armed Lateral Modes, Lateral Guidance

Command, Active and Armed Vertical Modes, and Vertical Guidance Command

Specifies Constraints Between Flight Director, Lateral Guidance, and Vertical Guidance

Flight Director

Exports Flight Director Status

Lateral Guidance

Exports Active Lateral Mode, Armed Lateral

Modes, and Lateral Guidance Command

Specifies Constraints Between Lateral Modes

ROLL HDG NAV APPR GA

Vertical Guidance

Exports Active Vertical Mode, Armed Vertical

Modes, and Vertical Guidance Command

Specifies Constraints Between Vertical Modes

PITCH VS ALT _ APPR GA

In

example described in [15],

Figure 6 - High Level FGS Architecture

The motivation behind this architecture is to minimize maintenance costs and to maximize reuse

between different members of the product family. This is achieved by ensuring:

the lateral and vertical modes all present similar interfaces to their parent

a mode does not know about the properties or existence of other modes in the aircraft

constraints between the siblings are localized in the appropriate parent.

the following sections, the mode logic of a single member of this family, based on the
is described in the context of this architecture.
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4.2 Synchronization of the Mode Machines

Building upon the high-level architecture of the previous section, the FGS mode logic can most

easily be visualized as a collection of tightly synchronizi.d, concurrent mode machines, one for

each component of the FGS (see Figure 7).

Most of the synchronization between the mode machines can be achieved by enforcing three
simple properties:

• If the flight director is on, one and only one lateral mode is active.

• If the flight director is on, one and only one verticel mode is active.

• If the flight director is off, all lateral and vertical rrodes are cleared.

Flight Director

Lateral Modes

ROLL

HDG

/1 Active "_

.... I

e-"_le a red_y)_-_/T_a_c k_ j

LAPPR

NAV

/I Active

H_Cleare__._ _)

Autopilot

e-_-Disabled)_

Vertical Modes

PITCH

o--I_C lea red"_¢ _@

vs

e--_3 leared_)_ ;'(_

VAPPR

"  ,ctive
)

ALTHOt D

-31eared/) e

Figure 7 - FGS Mode Stricture
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Thesepropertiesstatethatwhentheflight directoris turnedon, theremustbeoneactive lateral
modeandoneactiveverticalmodeto produceroll andpitch commands.Obviously,therecanbe
only oneactive lateralmodeandone activevertical modecontrolling the aircraft at anygiven
time.

To satisfythe first two properties,two of themodemachines,lateralRoll andvertical Pitch,are
designatedasdefault modes. This designation means that if the Flight Director is on, and no

other modes are active, these two machines will be active. For example, if HDG mode is active

in the current state, and the HDG button is pressed on the Flight Control Panel, HDG will clear.

Since one lateral mode must be active, the default mode (ROLL) will become active (See Figure

8).

Likewise, with ROLL active, if the HDG button is pressed again, HDG will be activated. Since

only one lateral mode can be active, the previous active mode (ROLL) will be cleared (see

Figure 9).

These synchronizations have all been between the Flight Director and the Lateral and Vertical

modes, or within the Lateral and Vertical modes. More difficult are the synchronizations

between the Lateral and Vertical modes. In the CoRE FGS specification, Lateral Approach

(LAPPR) and Vertical Approach (VAPPR) are synchronized, so that when LAPPR enters Track,

VAPPR becomes Armed (see Figure 10 through Figure 12).

Lateral Modes
ROLL

NDG

LAPPR

.Av
Cleared .....

HDG Button_

Pressed V/

Lateral Modes
ROLL

HDa

d )1 "-( Active_

Cleared.)ll._...__ I ______Z I

NAV

Figure 8 - Activation of Default Mode
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Lateral Modes
ROLL

NDG

LAPPR
HDG Buttonr_

Pressed [//

LateralModes
_OLL

HDG

I.APPR

NAV

Figure 9 - Ensuring Only One Mode is Active

Although closely related, LAPPR and VAPPR behave quite differently. In LAPPR, the Armed
state is an Active state, meaning that all other lateral modes are cleared when it is active. In the

case of VAPPR, the Armed state is not an Active state. When VAPPR is armed, another vertical

mode is actively producing pitch commands. In fact, the active vertical mode can be changed
while VAPPR is armed. Trying to change the active lateral mode while LAPPR is armed clears
LAPPR.

This difference is an example of a potential source of mode confusion cited by Leveson, et. al.,

[13], inconsistent behavior. While the difference is quite obvious in Figure 10 through Figure 12,

it was obscure enough in the original CoRE specification [15] that it was missed in several

inspections. This illustrates the value of creating a t igh level, executable model of the
automation.

LAPPR and VAPPR could be changed to have similar be)laviors simply by not making LAPPR
Armed an active state. If desired, a constraint could be added such that whenever LAPPR entered

the Armed state, HDG was forced to be the active lateral mode. Of course, whether this actually
provided the desired behavior and reduced the potential for mode confusion would need to be

determined by experts in human factors, pilots, and the sys-em engineers.
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Lateral Modes

ROLL

HDG

LAPPR

NAV

Vertical Modes

PITCH

VS

VAPPR

ALTHOLD

Figure 10 -

Step 1 - LAPPR is Armed.

Synchronization Between Lateral and Vertical Approach
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Lateral Modes

ROLL

HDG

LAPPR

NAV

Vertical Modes

PITCH

e--_ Cleared/_ _(_

VS

VAPPR

ALTHOLD

e-_Cleared_)¢

Step 2 - The aircraft coming within lateral capture range causes LAPPR to
change to Track.

Step 3 - LAPPR changing to Track causes VAPPR to change to armed.

Figure I 1 - Synchronization Between Lateral and Vertical Approach (Continued)
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Lateral Modes

ROLL

HDG

LAPPR

NAV

Vertical Modes

PITCH

vs

VAPPR

ALTHOLD

Step 4 - The aircraft coming within vertical capture range causes

VAPPR to change to Track, causing Pitch to clear.

Figure 12 - Synchronization Between Lateral and Vertical Approach (Continued)
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4.3 Examples of Possible Sources of Mode Cmfusion

The ability to visualize both the cockpit and the Flight Gmdance modes simultaneously is critical

to understanding the actual behavior of the system. The following are examples of potential

sources of mode confusion found in the example CoRE FGS specification [15] through

visualization of the automation and cockpit.

4.3.1 Rotation of the VS/Pitch Wheel

In [13], Leveson et. al., identify inputs that are interpreted differently in different modes as a

potential source of mode confusion. An example of this is the response of the system to a

rotation of the VS/Pitch Wheel. When the active vertical mode is PITCH or VS, rotating the

VS/Pitch Wheel on the flight control panel will not cause a mode change (see Figure 13).

However, rotating the wheel when ALTHOLD is active will cause PITCH to become active, and

ALTHOLD to clear (see Figure 14). Thus, in one mode, turning the VS/Pitch Wheel causes a

mode change, while in another, it does not.

There are obvious reasons why rotating the VS/Pitch Wheel should not cause a mode change in

PITCH or VS mode. while in PITCH mode, rotation of the wheel is used to change the pitch

reference (desired pitch angle) of the aircraft. In VS mode, the wheel is used to change the

vertical speed reference (desired vertical rate of ascent or descent). Using the same input device

for both purposes conserves the limited space of the flight deck. Whether this is a significant

source of mode confusion is a question that would need to be explored carefully by experts in

human factors and flight deck design. In the same way, it can be argued whether rotating the

VS/Pitch Wheel while in ALTHOLD mode should cause a mode change. It may be that this is an

intuitive way for the pilot to interact with the system and is not a source of confusion.

Vertical Modes
PITCH

VS

VAPPR_--_. ....

ALTHOLD

VS/Pitch Wheel turned_

Vertical Modes
PITCH

VS

ALTHOLD

Figure 13 - Rotating the VS/Pitch Wheel Does Not Cause a Mode Change
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Vertical Modes
PITCH

VS

ALTHOLD

VS/Pitch Wheel turned_

Vertical Modes
PITCH

VS

ALTHOLD

Figure 14 - Rotating the VS/Pitch Wheel Does Cause a Mode Change

4.3.2 Similar Annunciations

Another common source of mode confusion cited in [13] is lack of appropriate feedback. An

example of this is the similarity of annunciations for NAV and APPR mode (see Figure 15 and

Figure 16).

Figure 15 - NAV Mode Armed

Figure 16 - APPR Mode Armed
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The only difference in the CoRE FGS model in annunciating these two modes are the indicator

lights around the NAV and APPR buttons. One way to resolve this would be to add a GS

(glideslope) annunciation in the vertical armed field when lateral APPR mode is armed. The

CoRE FGS model did not specify this since the vertical APPR mode does not enter the Armed

state until the lateral APPR mode enters the Track state (see Section 4.2).

4.3.3 Response to the FD Switch

A final example of a potential source of mode confusion is the response to the FD button. The

system interprets these differently depending on the carrent state of the system. When the

Autopilot is not engaged and an overspeed condition does not exist, the FD switch will toggle the

Flight Director between On and Off, removing both the mode annunciation and the guidance

cues. When the Autopilot is engaged or an overspeed condition exists, the FD switch toggles

between Cues-Off and Cues-On mode, removing the guidance cues but leaving the modes
annunciated (see Figure 17).

Again, there are good reasons for this behavior. If the Autopilot is engaged, the Flight Director
must be on since FAA regulations (and common sense) dictate that modes be annunciated when

the Autopilot is engaged. For similar reasons, the mode:; are annunciated during an overspeed

condition. Pressing the FD button while the Autopilot is engaged or an overspeed condition

exists serves to both de-clutter the display and provide feedback to the pilot that the button press
was recognized.

This example, as well as all those in this section, illustrate the need for potential sources of mode

confusion to be carefully evaluated on a case by case, basis. Often, there are constraints or

conflicting requirements behind a particular design thai are not readily apparent. Part of the

contribution of this approach is to show how a hi#-level, executable model and a few

inexpensive mock-ups can be used to detect potential sore ces of mode confusion and to facilitate

discussion of how they can be resolved by the system designers, pilots, and experts in human
factors.
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Autopilot Disengaged

Flight Director

Autopilot

FD

Pressed

Flight Director

Autopilot

FD

Pressed

Flight Director

Autopilot

Autopilot Engaged

Flight Director

Autopilot

FD

Pressed

Flight Director

Autopilot

FD

Pressed

Flight Director

Autopilot

Figure 17 - Behavior of the FD Switch
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Chapter 5

The Formal Model

The PVS specification of the mode logic follows the same architecture as was presented in
Figure 6. 3 The import hierarchy for the PVS specification is shown in Figure 18. There is a

theory Flight_Guidance that imports theories for Flight_Director, Lateral_

Guidance, and Vertical_Guidance. LateralGuidance imports theoriesfor the

lateralmodes and Vertical_Guidance imports theoriesfor the verticalmodes. However,

many of the modes have identical state behavior and can be described by the same theory when

only the mode logic is considered. 4 In the current FGS model, only three basic theories,

Simple_Guidance, Arming_Guidance, and Non-Arming_Guidance, were needed to

describe all the modes. The following sections describe the PVS specification starting with these

three theories and building to Flight_Guidance. Nz.mes taken from the PVS theories are

printed in italics.

Flight
Guidance

I Flig ht I Lateral I Vertical IDirector Guidance Guidance

ISim leI  rmin lI °n rmi  Guidance Guidance Guidance

Figure 18 - PVS Import Hierarchy

3 The PVS model completed in Phase I does not include all the modes shown in the visualization.

4 If the this model were extended with additional information, e.g., the computation of the pitch or roll guidance
command generated by the mode, this would no longer be true and separate theories would need to be defined for
each mode. However, the common state behavior could still be shared among similar modes.
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5.1 System Events

Events of interest to the entire Flight Guidance System, such as pressing the HDG switch, are

defined in the theory System shown in Figure 19 and Figure 20. This theory enumerates all the

system events and categorizes them according to which components of the Flight Guidance

System they may affect. To facilitate reasoning about each mode separately and to use a template

for defining similar modes, events are also defined locally within each component and a mapping

is provided from the system events to these local events. Examples of this are provided in the

following sections.

System: THEORY

BEGIN

.........................................................................

% Events seen by the FGS
.........................................................................

Event: TYPE - { HDG_Switch_Hit,

NAV_Switch_Hit,

NAVArmed_Long_Enough,

NAV Track_Cond_Met_Event,

GA_Switch_Hit,

VS_Pitch_Wheel_Changed,
VS_Switch_Hit,

AP_Engaged,

AP_Disengaged,
FD_Switch_Hit,

Overspeed_Start,
Overspeed_End,

SYNC_Switch_Pressed,

SYNC_Switch_Released }

.........................................................................

% There are no events that directly affect the lateral ROLL mode.

% In this FGS, ROLL mode is the default lateral mode and is selected or

% cleared by changing the other lateral modes.
.........................................................................

ROLL_Event?(e:Event) : bool = False

.........................................................................

% Events directly affecting the lateral HDG mode.
.........................................................................

HDG_Event?(e:Event) : bool = HDG_Switch_Hit?(e)

.........................................................................

% Events directly affecting the lateral NAV mode.
.........................................................................

NAV_Event?(e: Event) : bool : NAV Switch Hit?(e) OR

NAV_Armed_Long_Enough?(e) OR NAV_Track_Cond_Met_Event?(e)

.........................................................................

% Events directly affecting the lateral GA mode.
.........................................................................

LGA_Event?(e: Event) : bool = GA_Switch_Hit?(e) OR

AP_Engaged?(e) OR SYNC_Switch_Pressed?(e)

.........................................................................

% Events directly affecting the active lateral mode.
.........................................................................

Lateral Event?(e: Event) : bool =

ROLL_Event?(e) OR HDG_Event?(e) OR NAV Event?(e) OR LGA_Event?(e)

Figure 19 - PVS Specification of System Events
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5.2 State Behavior of the Operational Modes

The state behavior of the operational modes are described by three theories,

Simple_Guidance, Arming_Guidance, and Non-Arming_Guidance. To provide a

consistentinterfaceto the Lateral_Guidance and Vertical_Guidance theories,allof

these theoriesare structuredsimilarlyand provide similarresponses to certainevents. For

example, the Activate event always takes a mode into an active state if it is in an inactive

state, otherwise it is ignored. The Deact ivate event always takes a mode into an inactive state

if it is in an active state. The Switch event toggles a mode between active and inactive states,

acting like an Activate event in an inactive mode and a Deactivate event in an active

mode. Finally, the Clear event places the mode into the cleared state.

Each of the three theories contains a PVS record, Star e_Vector, that contains the current

state of the mode and any additional state information associated with the mode. Since PVS does

not provide explicit state variables, the state information for each mode is maintained in a

State_Vector record in either Lateral_Guidance or Vertical_Guidance. The

% Events directly affecting the vertical PITCH mode
.............................. ...........................................

PITCH_Event?(e: Event) : bool = VS Pitch Wheel =hanged?(e)

..........................................................................

% Events directly affecting the vertical SPEED node
..........................................................................

VS_Event?(e: Event) : bool = VS_Switch_Hit?(_)

..........................................................................

% Events directly affecting the vertical GA mode.
.........................................................................

VGA_Event?(e: Event) : bool = GA_Switch_Hit?(e) OR

AP_Engaged?(e) OR SYNC_Switch_Pressed?(e)

..........................................................................

% Events directly affecting the active vertical mode.
..........................................................................

Vertical_Event?(e: Event.) : bool =

PITCH_Event?(e) OR VS_Event?(e) or VGA_Event?(e)

..........................................................................

% Lateral mode requests than can turn on the Flight Director
.........................................................................

Lateral_Mode_Requested?(e: Event) : bool =

HDG Switch_Hit?(e) OR NAV_Switch_Hit?(e) OR GA_Switch_Hit?(e)

.........................................................................

% Vertical mode requests that can turn on the FLight Director
.........................................................................

Vertical Mode RequestedT(e: Event) : bool =

VS_Switch_Hit?(e) OR GA_Switch_Hit?(e)

......................................................................

% Events that affect the Flight Director
.........................................................................

Flight_Director_Event?(e: Event) : bool =

AP Engaged?(e) OR

FD_Switch_Hit?(e) OR

Overspeed_Start?(e) OR

Lateral Mode_Requested?(e) OR
VerticaT_Mode_Requested?(e)

END System

Figure 20 - PVS Specification of System Events (Continued)
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State_Vector records for Lateral_Guidance and Vert ical_Guidance are in turn

maintained in a State_Vector record in Flight_Guidance. While the intent is that the

state information for a mode is encapsulated within the theory for that mode and is not directly

manipulated by other theories, this is enforced only by convention.

Each mode theory also provides a function, next_state, that takes the current state of a mode

and an event and returns the next state and a set of internal events, or signals, that need to be

acted on by other components. For example, if a mode becomes active, the next_state

function returns both the new state and the Activated signal. This signal is used by either

Lateral_Guidance or Vertical_Guidance to ensure thatthe currentactivemode is

cleared. Finally, each theory provides a predicate Active? that takes the current state of the

mode and returns true if the mode is active.

5.2.1 Simple Guidance

The state behavior for Simple_Guidance is depicted in Figure 21. As its name implies,

modes exhibiting this behavior only have two states, CLEARED and ACTIVE, and a handful of

transitions between them. Since these modes are so simple, the Clear and Deactivate

events cause identical state changes. Both events are defined in order to provide an interface
consistent with those of other modes.

CLEARED

Activate

Switch

Clear

aF----- Switch

Deactivate

ACTIVE

Figure 21 - State Behavior for Simple Guidance

The PVS specification Simple_Guidance is shown in Figure 22. The two states for the

mode are defined as a PVS enumeration type. For modes that can be described by

Simple_Guidance, the State_Vector record only contains the current state of the mode.

The mode is Act ire ? if the value of this field is ACTIVE.
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To facilitate using Simple_Guidance as a template fi,r several modes, the events that cause

state transitions in Simple_Guidance are listed here as the PVS enumeration type Event.

The external system events listed in Figure 19 and Figure 20 are mapped into these events in the

Lateral_Guidance and Vertical_Guidance tht;ories. The internal events, or signals,

that may be raised in Simple_Guidance are defined :ts the enumeration type Signal. The

next_state function defines how a Simple_Guidance mode responds to each event by

returning the new state and the set of signals raised for synchronization with the other modes. If

no further synchronization is necessary, a single Nul 1 ? signal is returned.

COND

Activate?(e)
Switch?(e)

Clear?(e)

Deactivate?(e)

ENDCOND

ELSE % IF ACTIVE?(s)

COND

Deactivate?(e)

Switch?(e)

Clear?(e)

Activate?(e)
ENDCOND

ENDIF

-> ((# state := ACTIVE # , Activated?),
-> ((# state := ACTIVE # , Activated?),

-> ( s, Null?),

-> ( s, Null?)

THEN

-> ((# state := CLEARED # , Deactivated?),

-> ((# state :: CLEARED # , Deactivated?),

-> ((# state := CLEARED # , Deactivated?),

-> ( s, Null?)

END Simple_Guidance

Figure 22 - PVS Specification of Simple Guidance
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5.2.2 Arming Guidance

The state behavior for Arming_Guidance is depicted in Figure 23. Arming_Guidance

extends the behavior of Simple_Guidance by adding sub-statesARMED and TRACK of the

ACTIVE state,and sub-statesARMED_INITIAL and ARMED_LONG_ENOUGH of the ARMED

state.Arming_Guidance modes are those in which the system can be armed pending the

capture of a navigation source, but is also active and generating guidance commands while

armed. For example, the lateral navigation (LNAV) mode can generate lateral guidance

commands to fly a specific heading while armed for the capture of a navigation source such as a

VOR. In TRACK mode, the navigation source has been captured and the mode is generating

guidance commands to track that source. The sub-states ARMED_INITIAL and ARMED_LONG_

ENOUGH are used to ensure that the system remains in the ARMED mode a minimum period of

time even if the conditions for capturing the navigation source are satisfied on entry to the
ARMED mode.

H Cleared 4

J

Activate

Switch

Clear

Switch

Deactivate

/

Active

Armed

( Armed "_ _ Armed

I_1 Initial _ Long.

J

Figure 23 - State Behavior for Arming Guidance

The PVS specification for Arming_Guidance is given in Figure 24. The enumeration of

states is extended to include ARMED_INITIAL, ARMED_LONG_ENOUGH, and TRACK. The

ARMED and ACTIVE states are defined as predicates over these base states. The

State__Vector contains the current state of the mode and a boolean, Track_Cond_Met?,

that indicates whether the conditions for capture of the navigation source are met. The list of

events are extended to include the event Track_Cond_Met that occurs when the condition for

capture of the navigation source are met and the event ArmedLongEnough that occurs

when the state has been ARMED for the minimum acceptable amount of time. Finally, the

next_s t at e function defines the new state created and signals raised by processing an event.
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Arming_Guidance: THEORY

BEGIN

.........................................................................

% Mode States
.........................................................................

State: TYPE = {CLEARED, ARMED INITIAL, ARMED_LfNG ENOUGH, TRACK}

ARMED?(s: State) : bool = ARMED_INITIAL?(s) OR ;RMED_LONG_ENOUGH?(s)

ACTIVE?[s: State): bool : ARMED?(s) OR TRACK?(s)

.........................................................................

% State vector

.........................................................................

State_Vector: TYPE = [# state: State,

Track_Cond_Met? : bool #]

.........................................................................

% Useful Definitions

.........................................................................

Active?(s: State_Vector) : bool = ACTIVE?(state(s))

.........................................................................

% Incoming Events and Outgoing Signals
.........................................................................

Event: TYPE = {Activate, Clear, Switch, Deactivate,

Track_Cond_Met, Armed_Long_Enough}

Signal: TYPE : {Null, Activated, Deactivated}

.........................................................................

% Next state function
.........................................................................

next state(s: State_Vector, e: Event ): [State_Vector, set[Signal] ] =
IF CLEARED?(state(s)) THEN

COND

Activate?(e) -> s WITH [state := AR_ED INITIAL], Activated?),

Switch?(e) -> s WITH [state := AR_ED INITIAL], Activated?),

Clear?(e) -> s, Null?),

Deactivate?(e) -> s, Null?),

Track_Cond_Met?(e) -> s WITH [Track_Cond__et? := true],Null?),

Armed_Long_Enough?(e) -> s, Null?)
ENDCOND

ELSE % IF ACTIVE?(state(s))
COND

Activate?(e) -> s,

Switch?(e) -> s WITH [state :: CLEARED],

Clear?(e) -> s WITH [state := CLEARED],
Deactivate?(e) -> s WITH [state := CLEARED],

Track_Cond_Met?(e) ->
IF ARMED_LONG_ENOUGH?(state(s))

THEN (s WITH [state := TR%CK,

Track_Cond_[{et? := true],Null?)

ELSE (s WITH [Track_Cond [4et? :- true],Null?)

ENDIF,

Armed_Long_Enough?(e) ->
IF ARMED_INITIAL?(state(s)) & Track Cond_Me;?(s)

THEN (s WITH [state := T_%CK], Null?)

ELSIF ARMED_INITIAL?(state(s)) & NOT Track_Cond_Met?(s)

THEN (s WITH [state := A_{ED LONG ENOUGH], Null?)

ELSE ( s, Null?)

ENDIF
ENDCOND

ENDIF

END Arming_Guidance

Figure 24 - PVS Specification of Aiming Guidance

Null?),

Deactivated?),

Deactivated?),
Deactivated?),

5_3 Lateral Guidance

As discussed in Section 4.1, Lateral_Guidance contains the lateral modes and maintains

any constraints between them. The PVS specification of Lateral_Guidance is shown in

Figure 25 and Figure 26. The specification of the lateral modes of ROLL, HDG, and GA are
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created by importing the S imp le_Gui dance theory and assigning each mode an abbreviation.

The specification of lateral NAV mode is created by importing the ArmingGuidance theory

with an abbreviation. The State Vector for LateralGuidance consists of the state

vectors for each of these modes.

The Clear_All_Modes function is used by Flight_Guidance to clear (turn off) all

lateralmodes when the FlightDirectoristurnedoff.Ituses the next_state functionof each

mode to keep the PVS specification as close as possible to the ObjecTime model used for
visualization.

Lateral_Guidance : THEORY

BEGIN

IMPORTING System

ROLL: THEORY = Simple_Guidance

HDG: THEORY = Simple_Guidance

NAV: THEORY : Arming_Guidance

GA: THEORY = Simple_Guidance

State_Vector: TYPE : [# ROLL: ROLL.State_Vector,

HDG: HDG.State_Vector,

NAV: NAV.State Vector,

GA: GA.State_Vector #]

..........................................................................

% Clear all lateral modes

..........................................................................

Clear_All_Modes(s: State_Vector): State_Vector =

(# ROLL := proj_l(next_state(ROLL(s), Clear)),

HDG :: proj_l(next_state(HDG(s), Clear)),

NAV := proj l(next_state(NAV(s), Clear)),

GA :: proj_l(next_state(GA(s), Clear)) #)

..........................................................................

% Deactivate all lateral modes. Note that this function changes a mode
% only if it is active.

..........................................................................

Deactivate_All Modes(s: State_Vector): State Vector =

(# ROLL := proj_l(next_state(ROLL(s), Deactivate)),

HDG :: proj_l(next_state(HDG(s), Deactivate)),

NAV :: proj_l(next_state(NAV(s), Deactivate)),

GA := proj l(next_state(GA(s), Deactivate)) #)

..........................................................................

% Select (activate) the default mode

..........................................................................

Select_Default_Mode(s: State_Vector): State_Vector =

s WITH [ ROLL := pro3_l(next_state(ROLL(s), Activate)) ]

..........................................................................

% Map system HDG events onto the events of HDG theory
..........................................................................

HDG_Event(e: (HDG_Event?)) : HDG.Event =
COND

HDG_Switeh Hit?(e) -> HDG.Switch

ENDCOND

..........................................................................

% Map system NAV events onto the events of NAV theory
..........................................................................

NAV_Event(e: (NAV_Event?)) : NAY.Event =
COND

NAV_Switch Hit?(e) -> NAV.Switch,

NAV_Track_Cond Met Event?(e) -> NAV.Track_Cond_Met,

NAV_Armed_Long_Enough?(e) -> NAV.Armed_Long_Enough
ENDCOND

Figure 25 - PVS Specification of Lateral Guidance
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The Deactivate_All_Modes function is used by L,iteral_Guidance to ensure that at

most one lateral mode is ever active. This function changes the state of a mode only if the mode

is active.The Select_Default_Mode function is used by Lateral_Guidance to

activate the default mode when the current active lateral mode is deactivated and by

Flight_Guidance to activate the default mode when the FlightDirector is turned on

without the selection of a specific lateral mode.

% Map system LGA events onto the events of GA theory
..........................................................................

GA Event(e: (LGA_Event?)) : GA.Event =

COND

GA_Switch_Hit?(e) -> GA.Activate,

AP_Engaged?(e) -> GA.Clear,
SYNC Switch_Pressed?(e) -> GA.Clear

ENDCOND

Signal: TYPE = {Null}

..........................................................................

% Process the next event

..........................................................................

next_state(s:State_Vector, e:System. Event): [State_Vector, set[Signal] ] :
COND

........................................................................

HDG_Event?(e) ->
........................................................................

LET (newHDG, signals) : next state(HDG(s), HDG Event(e))

IN IF signals(Activated) THEN

(Deactivate_All_Modes(s) WITH [HDG := newHDG], Null?)

ELSIF signals(Deactivated) THEN
(Select Default_Mode(s WITH [HDG := new_DG]), Null?)

ELSE

(s WITH [HDG := newHDG], Null?)

ENDIF,

........................................................................

NAV Event?(e) ->
........................................................................

Let (newNAV, signals) = next_state(NAV(s), NAV_Event(e))

IN IF signals(Activated) THEN

(Deactivate_All_Modes(s) WITH [NAV := newNAV], Null?)

ELSIF signals(Deactivated) THEN

(Select Default_Mode(s WITH [NAV := newNAV]), Null?)
ELSE

(s WITH [NAV :: newNAV], Null?)

ENDIF,

........................................................................

LGA Event?(e) ->

........................................................................

LET (newGA, signals) = next_state(GA(s), GA_Ew_nt(e))

IN IF signals(Activated) THEN
(Deactivate All Modes(s) WITH [GA := neW,A], Null?)

ELSIF signals(Deactivated) THEN

(Select Default_Mode(s WITH [GA := newGA ]), Null?)

ELSE

(s WITH [GA := newGA], Null?)

ENDIF,

ELSE -> (s, Null?)

ENDCOND

END LateralGuidance

Figure 26 - PVS Specification of Lateral Guidance (Continued)

34



The system level events defined in theory System (Figure 19 and Figure 20) are mapped into

the internal events of Simple_Guidance and Arming_Guidance by the functions HDG_

Event, NAV_Event, and GA_Event. For example, GA_Event maps the system event

AP_Engaged intothe Simple_Guidance event Clear fortheoryGA.

The next_state function for Lateral_Guidance takes a state vector for

Lateral_Guidance and a system event and returns the new state vector and a set of signals

raised. Since the system events have been categorized by the modes of the FGS they affect, the

nextstate function first determines if the event could affect a particular mode, then

computes the new state of the mode, then synchronizes any changes in the state of the mode with

the other lateral modes. For example, if the event is a HDG_Event, the next_state function

first computes the next state of the HDG component (recall that the SimpleGuidance theory

used to create the HDG theory also has a next_state function). If the Activate signal was

raised, indicating that the HDG mode has become active as a result of the event, then all modes in

the lateral guidance state vector are deactivated and the new active HDG mode is installed in the

state vector. In like fashion, if the Deactivate signal was raised, indicating that the HDG

mode has become inactive, then the new inactive HDG mode is installed in the state vector and

the default mode is selected (activated). If no signals were raised, no synchronization with the

other modes are necessary and the new HDG mode is simply installed in the

Lateral_Guidance state vector. Finally, note that if the event does not affect any lateral

modes, the original state vector and the null signal are returned.

5.4 Vertical Guidance

Vertical_Guidance plays the same role for the vertical modes that Lateral_Guidance

does for the lateralmodes. The PVS specificationfor Vertical_Guidance is shown in

Figure 27 and Figure 28. The specificationof the verticalmodes of PITCH, VS, and GA are

createdby importing the Simp ie_Guidance theoryand assigningeach mode an abbreviation.

The State_Vector forVertical_Guidance consistsof the statevectorsforeach of these

modes.

The Clear_All_Modes, Deactivate_All_Modes, and Select_Default_Mode

_nctionsse_e thesame _nctionsasinLateral_Guidance, but_rthevertical modes. The

de_ult verticalmode is PITCH. The next_state _nction is _so similar to that _r

Lateral_Guidance
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Vertical_Guidance: THEORY

BEGIN

IMPORTING System

PITCH: THEORY = Simple_Guidance

VS: THEORY : Simple_Guidance

GA: THEORY : Simple_Guidance

State_Vector: TYPE : [# PITCH : PITCH.State_Vector,
VS : VS.State_Vector,

GA : GA.State_Vector #]

..........................................................................

% Clear all vertical modes.

..........................................................................

Clear_All_Modes(s: State_Vector): State Vector =

(# PITCH := proj l(next_state(PITCH(s), Clear)),

VS := proj l(next state(VS(s), Clear)),

GA := proj l(next state(VS(s), Clear)) #)

..........................................................................

% Deactivate all vertical modes. Note that this function changes a mode
% only if it is active.

..........................................................................

Deactivate_All_Modes(s: State Vector): State Vector =

(# PITCH := proj_l(next_state(PITCH(s), Deactivate)),

VS :: proj_l(next_state(VS(s), Deactivate)),

GA :: proj_l(next_state(GA(s), Deactivate)) #)

..........................................................................

% Select (activate) the default mode

..........................................................................

Select_Default_Mode(s: State_Vector): State_Vector =

s WITH [ PITCH := proj_l(next_state(PITCH(s), iActivate)) ]

..........................................................................

% Map system PITCH events onto the events of PIqCH theory
...........................................................................

PITCH_Event(e: (PITCH_Event?)) : PITCH.Event =
COND

VS_Pitch_Wheel_Changed?(e) -> PITCH.Activate
ENDCOND

..........................................................................

% Map system VS events onto the events of VS theory
..........................................................................

VS_Event(e: (VS_Event?)) : VS.Event =
COND

VS_Switch_Hit?(e) -> VS.Switch
ENDCOND

...........................................................................

% Map system VGA events onto the events of GA theory
..........................................................................

GA_Event(e: (VGA_Event?)) : GA.Event =
COND

GA Switch_Hit?(e) -> GA.Switch,

AP_Engaged?(e) -> GA.Clear,
SYNC_Switch_Pressed?(e) -> GA.Clear

ENDCOND

Figure 27 - PVS Specification of V,_.rtical Guidance
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Signal: TYPE : {Null}

..........................................................................

% Process the next event

.........................................................................

next_state(s: State_Vector, e: System. Event):

[State_Vector, set[Signal] ] =
COND

........................................................................

PITCH_Event?(e) ->
........................................................................

LET (newPITCH, signals) = next_state(PITCH(s), PITCH Event(e))

IN IF signals(Activated) THEN

(Deactivate All Modes(s) WITH [PITCH := newPITCH], Null?)
ELSIF signals(Deactivated) THEN

(Select_Default_Mode(s WITH [PITCH := newPITCH] ), Null?)
ELSE

(s WITH [PITCH := newPITCH], Null?)

ENDIF,

........................................................................

VS_Event?(e) ->
........................................................................

LET (newVS, signals) = next_state(VS(s), VS_Event(e))

IN IF signals(Activated) THEN

(Deactivate All Modes(s) WITH [VS := newVS], Null?)

ELSIF signals_Deactivated) THEN

(Select_Default_Mode(s WITH [VS := newVS]), Null?)
ELSE

(s WITH [VS := newVS], Null?)

ENDIF,

........................................................................

VGA_Event?(e) ->
........................................................................

LET (newGA, signals) = next_state(GA(s), GA_Event(e))

IN IF signals(Activated) THEN

(Deactivate All Modes(s) WITH [GA := newGA], Null?)
ELSIF signals(Deactivated) THEN

(Select_Default_Mode(s WITH [GA := newGA]), Null?)
ELSE

(s WITH [GA := newGA ], Null?)

ENDIF,

ELSE -> (s, Null?)

ENDCOND

END Vertical_Guidance

Figure 28 - PVS Specification of Vertical Guidance (Continued)
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5.5 Flight Director

The Flight Director defines when the active and armed modes are annunciated and when the

guidance cues are displayed on the EFIS display. The state behavior of the Flight Director is
shown in Figure 29. The Flight Director has two main states, OFF and ON. When in the OFF

state, the active and armed lateral and vertical modes are aot annunciated and the guidance cues

are not displayed on the EFIS. When in the ON state, the active and armed lateral and vertical

modes are always annunciated on the EFIS. The ON state has two sub-states, CUES OFF and

CUES ON, that determine if the guidance cues are displayed or not.

f

Off on-1.-<ouono.)

Figure 29 - State Behavior for Flight Director

The PVS specification for the Flight_Director is saown in Figure 30. Events local to the

Flight_Director are those to Turn_On, Turn_Off, Force_Cues to force the

guidance cues to display, and Switch to toggle the Flight_Director on and off. The

F1 ight_Direct or returns two signals, Turned_On and Turned_Of f, used to coordinate

with the rest of the Flight Guidance System. The State_Vector consists simply of the Flight

Director's state. For convenience in the FlightGuidance theory, the function On? is
defined here as an abbreviation.

The next_state functionforthe Flight_Directo_: differsfrom the next statefunctions

encountered so far in that they include two additional boolean parameters, AP_Engaged? and

Overspeed?. These are components of the Flight Guidance System state external to the

F 1 ight_Di r e c t o r that affect its behavior. AP_Enga, ied? Indicates whether the Autopilot

is engaged. Overspeed? indicates if the airspeed of th._ aircraft exceeds its structural limits.

These are used as guards on some of the Flight_Director state transitions. In particular, if

the autopilot is engaged or the overspeed condition exists, the F1 i ght Direc t or must be in

the ON state so that the lateral and vertical modes are annunciated.
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Flight_Director: THEORY

BEGIN

..........................................................................

% States

..........................................................................

State: TYPE = {OFF, CUES, NO_CUES}

ON?(s: State) : bool : CUES?(s) OR NO_CUES?(s)

..........................................................................

% Events and Signals
..........................................................................

Event: TYPE = {Turn_On, Force_Cues, Switch, Turn_Off }

Signal: TYPE = {Null, Turned_On, Turned_Off}

..........................................................................

% State vector for the Flight Director
..........................................................................

State_Vector: TYPE = [# state : State #]

..........................................................................

% Useful definition

..........................................................................

On?(s: State_Vector): bool = ON?(state(s))

..........................................................................

% Next state function

..........................................................................

next state(s:State_Vector, e:Event, AP_Engaged?:bool, Overspeed?:bool):

[State_Vector, set[Signal]] -

IF OFF?(state(s)) THEN
COND

Force Cues?(e) -> (s WITH [state := CUES], Turned_On?),
Turn On?(e) -> (s WITH [state :: CUES], Turned_On?),

Switch?(e) -> (s WITH [state :- CUES], Turned_On?),

Turn_Off?(e) -> s, Null?
ENDCOND

ELSIF CUES?(state(s)) THEN
COND

Force Cues?(e) -> s, Null? ,

Turn On?(e) -> s, Null? ,

Switch?(e) OR Turn_Off?(e) ->

IF (Overspeed? or AP_Engaged?) THEN

(s WITH [state := NO_CUES], Null?)
ELSE

(s WITH [state := OFF], Turned_Off?)
ENDIF

ENDCOND

ELSE % IF NO_CUES(state(s)) THEN
COND

Force_Cues?(e) -> (s WITH [state := CUES], Null? ,

Turn On?(e) -> (s WITH [state := CUES], Null? ,
Swit_h?(e) ->

IF (Overspeed? or AP_Engaged?) THEN

(s WITH [state :: CUES], Null?
ELSE

(s WITH [state := OFF], Turned_Off?)

ENDIF,
Turn Off?(e) ->

IF (Overspeed? or AP_Engaged?) THEN
( s, Null?)

ELSE

(s WITH [state := OFF], Turned_Off?)
ENDIF

ENDCOND

ENDIF

END Flight_Director

Figure 30 - PVS Specification of Flight Director
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5.6 Flight Guidance

Flight_Guidance contains the Flight_Director, Lateral_Guidance, and

Ver tical_Gu idanc e components. The PVS specificationfor thistheoryisshown in Figure

31. The State_Vector forthe entireFlight_Guidance system consistsof the State_

Vectors forthesecomponents and the AP_Enaged? And Overspeed? indicatorsprovided

by sourcesexternalto the FlightGuidance System. Justas was done in Lateral_Guidance

and Vertical_Guidance, the FD_Event function.'.napsthe system levelevents thatcan

affectthe Flight_Director intothe localeventsfort;lattheory.

The next_state function for the entire Flight Guidance System is defined in terms of three

auxiliaryfunctions,Process_External_Event, Process FD Event, and Process_

Flight_Mode_Event. Each of these take a system event and a State_Vector and return

a new State_Vector.

The Process_External_Event is the simplest of the three. It simply updates

AP_Engaged? and Overspeed? booleans if the system event indicates their status has
changed.

The Process FD Event function updates the Flight_Director component of the

system state if the event might affect it. It first determines the new state of the F1 i ght_

Director. Ifthe F1 ight_Director was Turned_C ff, then the lateral and vertical modes

are clearedand the existingstateisupdated with the new stateof the Flight_Director and

the cleared lateraland verticalmodes. If the Flightr_Director was Turned_On, then

default lateral and vertical modes are selected and the existing state is updated with the new state

of the F1 ight_Director and the lateral and vertical modes. If the Flight_Director was

neither Turned_On or Turned__0ff by the event (for example, if the guidance cues were

simply turned off), then the existing state is updated with the new state of the Flight
Director.

The Process_Flight_Modes_Event determines any changes caused in the lateral and

vertical modes by the event and installs the new modes ia the State__Vector. No change is
made if the FlightDirector is turned off.

The next_state function takes a State_Vector and a system event and returns the

next_state of Flight_Guidance. No signals are returned from the nextstate

function as FlightGuidance is the top most theor) in the specification and there are no

sibling components to maintain synchronization with. It first computes any changes in the

AP_Engaged? and Overspeed? booleans, then computes any changes to the Flight_

Director, and finally computes any changes in the hteral and vertical modes. This tiered

strategy is necessary since an event may affect multiple components. For example, if the Flight

Director is off, pressing the HDG button will turn the F] ight_Director on and select the
HDG lateral mode and the default vertical mode.

40



Flight_Guidance : THEORY

BEGIN

IMPORTING Flight_Director, Lateral_Guidance, Vertical_Guidance

State_Vector: TYPE = [# FD : Flight_Director. State_Vector,

LATERAL : Lateral Guidance.State_Vector,

VERTICAL : VerticaT_Guidance. State_Vector,

AP_Engaged? : bool,

Overspeed? : bool #]

..........................................................................

% Map system Flight Director events to internal Flight Director events
..........................................................................

FD_Event(e: (Flight_Director Event?)) : Flight Director. Event =
COND

AP_Engaged?(e) -> Turn On,

Lateral Mode_Requested?(e) -> Turn_On,
Vertica__Mode_Requested?(e) -> Turn_On,

FD_Switch_Hit?(e) -> Switch,

Overspeed_Start?(e) -> Force_Cues

ENDCOND

..........................................................................

% Process events that change state external to the FGS
..........................................................................

Process_External_Event(e: System. Event, s: State_Vector): State_Vector =
COND

AP_Engaged?(e) -> s WITH [AP_Engaged? := true ],

AP_Disengaged?(e) -> s WITH [AP_Engaged? := false],

Overspeed_Start?(e) -> s WITH [Overspeed? := true ],

Overspeed_End?(e) -> s WITH [Overspeed? :: false],
ELSE -> s

ENDCOND

..........................................................................

% Process a flight director event
..........................................................................

Process FD Event(e: System. Event, s: State_Vector): State_Vector =

IF Flight Director_Event?(e) THEN

LET (newfd, signals) =

next state(FD(s) FD_Event(e), AP_Engaged?(s),Overspeed?(s))
IN IF signals(Turned_Off) THEN

s WITH [FD :: newfd,

LATERAL := Clear_All_Modes(LATERAL(s)),

VERTICAL :: Clear_All_Modes(VERTICAL(s))]

ELSIF signals(Turned On) THEN
s WITH [FD := newfd,

LATERAL :: Select Default_Mode(LATERAL(s)),

VERTICAL :: Select_Default_Mode(VERTICAL(s)) ]
ELSE

s WITH [FD :: newfd]
ENDIF

ELSE

S

ENDIF

..........................................................................

% Process a lateral or vertical mode event.

..........................................................................

Process_Flight_Mode_Event(e: System. Event, s: State_Vector): State_Vector =
IF On?(FD(s)) THEN

s WITH [LATERAL := proj_l(next_state(LATERAL(s),e)),

VERTICAL :: proj_l(next_state(VERTICAL(s),e)) ]
ELSE

s
ENDIF

..........................................................................

% Next state function

..........................................................................

next_state(s: State_Vector, e:System. Event): State_Vector :

Process_Flight_Mode_Event(e,

Process FD Event(e,

Process External_Event(e, s)))

Figure 31 - PVS Specification of Flight Guidance

41



Chapter 6

Proofs of Properties

There are many useful properties of the formal model described in Chapter 5 that can be

demonstrated with the PVS prover. These include ensuring that important relationships between

the modes are maintained, that the system behaves as expected to system events, and even that

particular sources of mode confusion do not exist in the model. These proofs are described in this
chapter.

6.1 Proving Key Relationships Between the Modes

As discussed in Section 4.1, the architecture of the FGS was chosen to minimize maintenance

and support the development of a family of Flight Guidance Systems. This is achieved by

breaking the FGS into several small, cohesive componems. A consequence of this is that there

are several important relationships that must be maintainec between the modes. These include:

1. If the autopilot is engaged, the flight director is on.

2. If the flight director is on, one and only one lateral mode is active.

3. If the flight director is on, one and only one verticai mode is active.

4. If the flight director is off, all lateral and vertical modes are cleared.

These properties are stated in PVS in the theory F 1 ±ght_ GuS_dance_Proper t 5_e s shown in

Figure 33. All of them are shown by induction over the reachable states. That is, for an arbitrary

state s and system event e, it is shown that if the propert) holds for state s, it also holds for the

state next state(s, e). Since these properties are trivially true of the initial system state,
they must hold for all states reachable from the initial state

For example, property 1 that the flight director must be on if the autopilot is engaged is the first

property proven. To simplify stating the desired property, the auxiliary function

FD On I f AP Engaged is first defined and used in the lemma FDOIFAPE (Flight Director

On IF AutoPilot Engaged), which states that if FD On -r [__AP_Engaged is true of state s, it

also true of state nextstate ( s, e). This lemma is proved by the simple PVS proof shown
in Figure 32.

II II

(SKOS IMP* )

(LEMMA "System. Event inclusive")

(INST? )

(APPLY (THEN (SPLIT -I) (GRIND))))

Figure 32 - Proof of Lemma FDOIFAPE
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Flight_Guidance_Properties: THEORY

BEGIN

IMPORTING Flight_Guidance,

Lateral Guidance_Properties,
Vertical_Guidance_Properties

s: VAR Flight_Guidance. State_Vector

e: VAR System. Event

..........................................................................

% The Flight Director is on if the Autopilot is Engaged
..........................................................................

FD On If AP Engaged(s): bool =
AP_Engaged?(s) => On?(FD(s))

FDOIFAPE: LEMMA

FD On If AP Engaged(s) => FD On If AP Engaged(next_state(s,e))

..........................................................................

% At least one lateral mode is active iff the Flight Director is ON
..........................................................................

At_Least_One_Lateral_Mode_Active(s): bool -

On?(FD(s)) <=> At_Least_One_Mode_Active(LATERAL(s))

ALOLMA: LEMMA

At_Least_One_Lateral_Mode_Active(s) =>

At_Least_One_Lateral Mode_Active(next_state(s,e))

..........................................................................

% There is never more than one lateral mode active.

..........................................................................

At_Most_One_Lateral_Mode Active(s): bool =
At_Most_One_Mode_Active(LATERAL(s))

AMOLMA: LEMMA

At_Least_One_Lateral_Mode_Active(s) &
At_Most_One_Lateral Mode Active(s) =>

At_Most_One_Lateral_Mode_Active(next_state(s,e))

..........................................................................

% At least one vertical mode is active iff the Flight Director is ON
..........................................................................

At_Least One Vertical_Mode_Active(s): bool =

On?(FD(s)_ <=> At_Least_One_Mode_Active(VERTICAL(s))

ALOVMA: LEMMA

At_Least_One_Vertical Mode Active(s) >

At Least_One_VertiCal Mode_Active(next_state(s,e))

..........................................................................

% At most one vertical mode is active iff the Flight Director is ON
..........................................................................

At_Most_One_Vertical_Mode Active(s): bool =
At_Most_One_Mode_Active(VERTICAL(s))

AMOVMA: LEMMA

At_Least_One Vertical Mode Active(s) &

At_Most_One VerticaT Mode Active(s) =>

At_Most_One_Vertical_Mode_Active(next_state(s,e))

..........................................................................

% A valid state is one in which the Flight Director is on if the Autopilot

% is engaged and exactly one lateral mode and one vertical mode are

% active iff the Flight Director is on.
..........................................................................

Valid_State(s): bool =

FD On If AP Engaged(s) &

At Least_One_Lateral_Mode_Active(s) &

At_Most_One_Lateral_Mode_Active(s) &

At_Least_One Vertical Mode Active(s) &
At_Most_One_Vertical_Mode_Active(s)

VS: LEMMA

Valid_State(s) => Valid_State(next_state(s,e))

END Flight_Guidance_Properties

Figure 33 - Flight Guidance Properties
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Properties 2, 3, and 4 are shown by proving lemmas ALOLMA (At Least One Lateral Mode

Active), AMOLMA (At Most One Lateral Mode Active), ALOVMA (At Least One Vertical Mode

Active), and AMOVMA (At Most One Vertical Mode Active). These make use of the auxiliary

functions in theories Lateral_Guidance_Properties and Vertical_Guidance_

Properties (shown in Figure 34 and Figure 35) thatdefinewhat itmeans for atleastand at

most lateral or vertical mode to be active.

The proof of ALOLMA makes use of the auxiliary pr_._dicate At_Least_One_Lateral_

Mode_Act ive, which is true when either the flight director is off or at least one lateral mode is

active. The desired property is then stated as an inductive proof over the reachable states.

The proof of AMOLMA also makes use of an auxiliary predicate At_Most_One_Lateral_

Mode_Active, which is true if no more than one lateral mode is active. The proof of

AMOLMA also requires that the predicate At_Least_Cne_Lateral_Mode_Act ive holds

for state s to eliminate the configurations where the flight director is off and a lateral mode is

active. This poses no problems as this predicate was shown to hold for all reachable states in the

proof of ALOLMA.

The lemmas ALOVMA and AMOVMA for the vertical modes are similar to those for the lateral

modes. Interestingly, the proofs for all four lemmas (ALOLMA, AMOLMA, ALOVMA, and

AMOVMA) are identical to those for FDOIFAPE shown in Figure 32.

Lateral_Guidance_Properties: THEORY

BEGIN

IMPORTING LateralGuidance

s: VAR Lateral_Guidance,State_Vector

e: VAR (Lateral_Event?)

...........................................................................

% Definition of at least one lateral mode activ_

...........................................................................

At Least_One_Mode Active(s): bool =

Active?(ROLL(s)) OR

Active?(HDG(s)) OR

Active?(NAV(s)) OR

Active?(GA(s))

............................................................................

% Definition of at most one lateral mode active
............................................................................

At_Most_One_Mode Active(s): bool =

LET R = Active?(ROLL(s)), H = Active?(HDG(s)
N = Active?(NAV($)), G = Active?(GA(s)) IN

(R => NOT H & NOT N & NOT G) &

(H => NOT R & NOT N & NOT G) &

(N => NOT R & NOT H & NOT G) &

(G => NOT R & NOT H & NOT N )

END Lateral_Guidance_Properties

Figure 34 - Lateral Guidanc_ Properties
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Finally, thesepropertiesare combinedin the definition of a Valid_State, i.e., a state in

which all of these properties hold. Lemma VS asserts that if Valid_State holds in state s, it

also holds in state next_state (s, e). The proof of VS makes direct use of the proofs of

lemmas FDOIFAPE, AL©LMA, AMOLMA, ALOVMA, and AMOVMA.

6.2 Regression Analysis

The modular architecture of the FGS facilitates incremental development of the PVS

specification by adding new modes to the existing framework. This was precisely the pattern we

followed in developing both the ObjecTime and PVS models. While it was straightforward to

specify the behavior of a single mode such as ROLL or GA, we found ourselves making small

mistakes when modifying the Lateral_Guidance, Vertical_Guidance, or Flight_

Guidance theories to include these new modes. As a result, we started developing simple

putative lemmas that described the response of the FGS to each new system event. A few of

these are shown in Figure 36.

Most of these could be proved with a single PVS (GRIND) command. While not technically

deep or challenging, they were very useful for checking that an error had not been introduced in

an already completed portion of the model. This process was very similar to regression testing,

except that instead of running test cases after each change, we ran the proofs of these lemmas.

Vertical_Guidance_Properties : THEORY

BEGIN

IMPORTING Vertical_Guidance

s: VAR Vertical Guidance. State_Vector
e: VAR (Vertical_Event?)

..........................................................................

% Definition of at least one vertical mode active

..........................................................................

At_Least_One_Mode_Active(s): bool =
Active?(PITCH(s)) OR

Active?(VS(s)) OR

Active?(GA(s))

..........................................................................

% Definition of at most one vertical mode active
..........................................................................

At_Most_One_Mode_Active(s): bool =

LET P = Active?(PITCH(s)), V : Active?(VS(s)), G = Active?(GA(s)) IN
(P => NOT V & NOT G) &

(V => NOT P & NOT G) &

(G => NOT P & NOT V )

END Vertical_Guidance_Properties

Figure 35 - Vertical Guidance Properties
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Flight_Guidance_Checks: THEORY

BEGIN

IMPORTING Flight_Guidance_Properties

s: VAR Flight_Guidance.State_Vector
e: VAR System. Event

..........................................................................

% Check for correct response to pressing HDG button.
...........................................................................

HDG_Selected: LEMMA

Valid_State(s) &

NOT ACTIVE?(state(HDG(LATERAL(s)))) & HDG Switch Hit?(e) =>

ACTIVE?(state(HDG(LATERAL(next_state(s,_))))_

HDG Deselected: LEMMA

Valid_State(s) &

ACTIVE?(state(HDG(LATERAL(s)))) & HDG_Switc]_Hit?(e) :>

ACTIVE?(state(ROLL(LATERAL(next_state(s,e}))))

...........................................................................

% Check for correct response to pressing NAV button.
..........................................................................

NAV_Selected: LEMMA

Valid_State(s) &

NOT ACTIVE?(state(NAV(LATERAL(s)))) & NAV S_,itch Hit?(e) =>
ACTIVE?(state(NAV(LATERAL(next_state(s,e))))_

NAV Deselected: LEMMA

Valid_State(s) &

ACTIVE?(state(NAV(LATERAL(s)))) & NAV_Switch Hit?(e) :>
ACTIVE?(state(ROLL(LATERAL(next_state(s,e]_)))

% Check for correct response to pressing VS button.
..........................................................................

VS_Selected: LEMMA

Valid_State(s) &

NOT ACTIVE?(state(VS(VERTICAL(s)))) & VS Switch Hit?(e) =>

ACTIVE?(state(VS(VERTICAL(next_state_s,e)))_)

VS_Deselected: LEMMA

Valid_State(s) &

ACTIVE?(state(VS(VERTICAL(s)))) & VS_Switch Hit?(e) =>

ACTIVE?(state(PITCH(VERTICAL(next state(s,e)))))

..........................................................................

% Check for correct response to pressing the FD button.
..........................................................................

FD_OFF: LEMMA

OFF?(state(FD(s))) & FD_Switch_Hit?(e) =>

CUES?(state(FD(nex:_state(s,e))))

FD_ON: LEMMA

ON?(state(FD(s))) & FD_Switch_Hit?(e) &

NOT (AP Engaged?(s) OR Overspeed?(s)) :>

OFF?(state(FD(next_state(s,e))))

FD_CUES: LEMMA

CUES?(state(FD(s))) & FD_Switch Hit?(e) &
(AP_Engaged?(s) OR Overspeed_(s)) :>

NO_CUES?(state(FD(next_state(s,e))))

FD NO CUES: LEMMA

NO_CUES?(state(FD(s))) & FD_Switch_Hit?(e) &

(AP_Engaged?(s) OR Overspeed?(s)) =>

CUES?(state(FD(next_state(s,e))))

END Flight Guidance_Checks

Figure 36 - Checks of FGS Response to System Events
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6.3 Searching for Sources of Mode Confusion

As discussed in Section 2.1, Leveson, et.al. [13], identify six categories of design that have

historically been sources of mode confusion:

1. Interface interpretation errors

2. Inconsistent behavior

3. Indirect mode changes

4. Operator authority limits

5. Unintended side effects

6. Lack of appropriate feedback

To the extent that these can be expressed formally, automated tools can be used to systematically
determine if such sources of mode confusion exist in our models. While much work remains to

be done in this area, this section demonstrates this concept with a few examples. The purpose of

this section is only to show how automated analysis can be used to discover potential sources of

mode confusion. Once such examples are discovered, there still needs to be a careful review of

their potential for mode confusion.

6.3.1 Inconsistent Behavior

Precisely defining the concept of inconsistent behavior is nontrivial and likely to be a long term

endeavor. However, examples of inconsistent behavior can easily be specified formally and

verified. For example, in Section 4.2 it was shown that many of the switches in the FGS act as

toggles, switching a mode between its CLEARED and ACTIVE states. But do the switches act

as toggles in all possible states? This question can be answered by proving a few simple lemmas

about each switch. For example, to assert that the HDG switch behaves as a toggle, we create the
lemmas

HDG_Toggle_l: LEMMA

NOT Active?(HDG(LATERAL(s))) :>

Active?(HDG(LATERAL(next_state(s, HDG_Switch_Hit))))

HDG_Toggle_2: LEMMA

Active?(HDG(LATERAL(s))) =>

NOT Active?(HDG(LATERAL(next_state(s, HDG_Switch_Hit))))

Each of these are easily proved with a single PVS Grind command. Similar lemmas are shown

for the other switches in theory Consistent_Behavior_Checks (Figure 37). While the

HDG, NAV, and VS switches always behave as toggles in the current model, this will not hold

as the model is expanded to include more modes. For example, in the CoRE FGS specification

[15] the VS switch is inhibited when in the Track state of Vertical Approach mode. When

Vertical Approach is added to the PVS model, the lemmas about the affected switches will need

to be changed to describe their new behavior. However, these lemmas serve as quick and easy

check on the model as new modes are incorporated.
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Consistent_Behavior Checks: THEORY
BEGIN

IMPORTING Flight_Guidance_Properties

s: VAR Flight_Guidance. State_Vector

e: VAR System. Event

...........................................................................

% Lemmas used to check that switches always act as toggles
...........................................................................

HDG_Toggle_l: LEMMA
NOT Active?(HDG(LATERAL

Active?(HDG(LATERAL

HDG_Toggle_2: LEMMA
Active?(HDG(LATERAL

NOT Active?(HDG(LATERAL

NAV_Toggle i: LEM}4A

NOT Active?(NAV(LATERAL

Active?(NAV(LATERAL

NAV_Toggle_2: LEMMA

Active?(NAV(LATERAL

NOT Active?(NAV(LATERAL

VS_Toggle_l: LEMMA

NOT Active?(VS(VERTICAL

Active?(VS(VERTICAL

VS_Toggle_2: LEMMA

Active?(VS(VERTICAL

NOT Active?(VS(VERTICAL

(s) :>

(next_state(s, HDG_Switch_Hit))))

(S) :>

(next_state(s, HDG_Sw:tch_Hit))))

s) =>

next_state(s, NAV_SwJtch_Hit))))

s) =>

(next_state(s, NAV_Switch_Hit))))

(S) =>

(next_state(s, VS_Switch_Hit))))

(S) :>

(next_state(s, VS_Switch_Hit))))

END Consistent_Behavior_Checks

Figure 37 - Consistent Behavior Checks

Also note that the GA switch is not included in this list. The GA switch, which is mounted on the

Control Yoke rather than the Hight Control Panel, behaves differently from the other switches in

that it only selects Go Around mode. To deselect Go Arotad mode, the pilot must select another

mode, press the SYNC button, or engage the Autopilot.

6.3.2 Ignored Crew Inputs

Direct inputs from the flight crew that are ignored by the automation in some states are likely to

be potential sources of mode confusion. Unfortunately, it can be very difficult to determine all

the cases in which a crew input is ignored. However, if these concepts can be formalized, the

conditions under which a crew input is ignored can easily be found using our model.

To do this, we first define the concept of a crew input. A list of events that meet our informal

notion of a crew input are easily identified by scanning the list of system events. These are

enumerated by defining a predicate Crew Input ? ove" the system events. This predicate is

shown in theory Ignored_Crew_Inputs in Figure 38. Next, we define what is means for a

crew input to be ignored. For this example, we define this as the failure of an event to cause a

mode change. The predicateMode Change?, shown in theory Ignored_Crew_Inputs in

Figure 38, defines a mode change as change in state of the Flight Director or one of the lateral or
vertical modes.
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Ignored_Crew_Inputs: THEORY

BEGIN

IMPORTING Flight_Guidance_Properties

s: VAR Flight_Guidance.State_Vector

e: VAR System. Event

..........................................................................

% Events directly initiated by the flight crew
..........................................................................

Crew_Input?(e: System. Event) : bool =

AP_Engaged?(e) OR

SYNC Switch_Pressed?(e) OR

SYNC_Switch Released?(e) OR

FD_Switch_HTt?(e) OR

Lateral_Mode Requested?(e) OR
Vertical Mode Requested?(e) OR

VS_Pitch_Wheel_Changed?(e)

..........................................................................

% A mode change occurs when the state of the autopilot, flight director,

% or any lateral or vertical mode changes.
..........................................................................

Mode_Change?(s,e): bool :

state(FD(s))

state(ROLL(LATERAL(s)))

state(HDG(LATERAL(s)))

state(NAV(LATERAL(s)))

state(GA(LATERAL(s)))

state(PITCH(VERTICAL(s)))

state(VS(VERTICAL(s)))

state(GA(VERTICAL(s)))

/: state(FD(next_state(s,e))) OR

/: state(ROLL(LATERAL(next_state(s,e)))) OR

/= state(HDG(LATERAL(next_state(s,e)))) OR

/= state(NAV(LATERAL(next_state(s,e)))) OR

/: state(GA(LATERAL(next_state(s,e)))) OR

/= state(PITCH(VERTICAL(next_state(s,e)))) OR

/- state(VS(VERTICAL(next_state(s,e)))) OR

/= state(GA(VERTICAL(next_state(s,e))))

% Lemma used to search for ignored crew inputs
..........................................................................

Search_For_Ignored_Crew_Inputs: LEMMA

Valid_State(s) & Crew_Input?(e) => Mode_Change?(s,e)

..........................................................................

% Crew inputs that do not cause a mode change.

% o Engaging the Autopilot when not in Go Around mode

% o Pressing the GA Switch when in Go Around mode
% o Pressing the SYNC switch when not in Go Around mode

% o Releasing the SYNC switch

% o Rotating the Vertical Speed/Pitch Wheel when Flight Director is off
% o Rotating the Vertical Speed/Pitch Wheel when in Pitch mode

..........................................................................

Ignored_Crew_Input?(s,e): bool =
AP_Engaged?(e) &

NOT (Active?(GA(LATERAL(s))) or Active?(GA(VERTICAL(s)))) OR

GA_Switch_Hit?(e) &

(Active?(GA(LATERAL(s))) & Active?(GA(VERTICAL(s)))) OR

SYNC_Switch Pressed?(e) &

NOT (Active?(OA(LATERAL(s))) or Active?(GA(VERTICAL(s)))) OR

SYNC_Switch_Pressed?(e) & NOT (On?(FD(s))) OR

SYNC Switch Released?(e) OR
VS_PTtch_Wheel_Changed?(e) & NOT (On?(FD(s))) OR

VS_Pitch Wheel_Changed?(e) &
(Active?(PITCH(VERTICAL(s))))

..........................................................................

% Lemma used to confirm that all ignored crew inputs are known
..........................................................................

No_Known_Ignored_Crew_Inputs: LEMMA
Valid_State(s) &

Crew_Input?(e) &

NOT Ignored_Crew_Input?(s,e) => Mode_Change?(s,e)

END Ignored_Crew_Inputs

Figure 38 - Ignored Crew Inputs
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To searchfor crewinputsthat areignored,weasserttheCalse) lemma

Search_For_Ignored_Crew_Inputs: LEMMA

Valid_State(s) & Crew_Input?(e) :- Mode_Change?(s,e)

and try to prove it with the PVS prover. This results in several proof sequents (e.g., proof

obligations) such as

{-i} VS_Pitch_Wheel_Changed?(e!L)

[-2] Valid_State(s!l)

.......

{i) CUES?(state(FD(s!l)))

{2} NO_CUES?(state(FD(s!l)))

The antecedents {-1 } and {-2 } are the assertions known _o be true at this point in the proof. To

complete this sequent, we have to show that either of the consequents {1 } or {2} follow from the

antecedents. That is, given that the event e!l is that the VS/Pitch Wheel was rotated, and that we

start in a valid state s!l, we must prove that the Flight Director was in the state CUES or NO

CUES prior to rotating the VS/Pitch Wheel. Since our model provides no such constraint

between the state of the Flight Director and our ability to rotate the VS/Pitch Wheel, this cannot

be proven.

At this point, we realize that the reason PVS is requiring us to prove the impossible is because

our original lemma was false. If the FD is in the state OFF, rotation of the VS/Pitch Wheel does

not cause a mode change in the FGS. In other words, we have found a case where a crew input

does not cause a mode change. Examination of the other sequents generated by PVS leads the
following list of seven crew inputs that are ignored by the FGS: 5

1. The Autopilot is engaged while not in lateral or veltical Go Around mode

2. The GA switch is pressed while in lateral and vertical Go Around mode

3. The SYNC switch is pressed while not in lateral or vertical Go Around mode

4. The SYNC switch is pressed while the Flight Director is turned off

5. The SYNC switch is released

6. The VS/Pitch Wheel is rotated while the Flight Din;ctor is turned off

7. The VS/Pitch Wheel is rotated while in Pitch mode

s The astute reader will note that rotation of the VS/Pitch Wheel while m VS mode is not included in the list. At the

end of Phase I, this scenario causes a mode change to PITCH in the pvs model. The necessary constraint will be

added in Phase II of the project.
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To avoid having to reexamine this list of sequents each time the model is changed, we define a

predicate Ignored_Crew_Inputs? (shown in Figure 38) that enumerates each of these
cases. We then create the lemma

No_Known_Ignored_Crew_Inputs: LEMMA

Valid State(s) &

Crew_Input?(e) &

NOT Ignored_Crew_Input?(s,e) => Mode_Change?(s,e)

that takes this list of known ignored crew inputs into account. As expected, the proof of this

lemma completes (in a little over a minute).

Trying to prove a lemma suspected to be false has allowed us to generate an explicit list of

ignored crew inputs. Used in this way, PVS becomes a tool of discovery rather than verification.

Moreover, the final proof can be rerun each time the PVS model of the mode logic is changed to

ensure no additional ignored crew inputs are created.

6.3.3 Indirect Mode Changes

Another common source of mode confusion identified in [13] is indirect mode changes. Indirect

mode changes occur when the system changes mode without a direct input from the operator.

While indirect mode changes are usually evident by inspection, the same technique used in the

previous section to detect ignored user inputs can be used to detect indirect mode changes. In this

case the lemma that we need to try to prove is

Search_For_Indirect_Mode_Changes: LEMMA

Valid_State(s) & NOT Crew_Input?(e) => NOT Mode_Change?(s,e)

This lemma states that all events that are not crew inputs, i.e., that are not direct inputs from the

operator, do not cause a mode change. Clearly, the exceptions to this lemma will be indirect

mode changes. Attempting to prove this lemma yields several unprovable sequents, just as in

Section 6.3.2. Examination of these leads to the following three sources of indirect mode

changes in the PVS model:

1. The overspeed condition becomes true while the Flight Director is turned off or is not

displaying the guidance cues

2. NAV mode remains Armed for the required minimum time

3. Navigation source is captured while in the Armed state of NAV mode

The first of indirect mode change forces the Flight Director to be turned on or display the

guidance cues when the overspeed condition occurs. The second causes a transition from the
ARMED INITIAL state of NAV mode to the ARMED LONG ENOUGH state of NAV mode. 6

6 This transition would be almost impossible for the flight crew to detect and probably should not even be
considered a mode change.
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Indirect_Mode_Changes: THEORY

BEGIN

IMPORTING Ignored_Crew_Inputs

s: VAR Flight_Guidance. State_Vector

e: VAR System. Event

..........................................................................

% Lemma used to search for indirect mode change_
..........................................................................

Search_For_Indirect_ModeChanges: LEMMA

Valid_State(s) & NOT Crew_Input?(e) => NOT Mcde_Change?(s,e)

..........................................................................

% The only mode changes not caused by crew inputs are

% o Overspeed while Flight Director off or nct displaying guidance cues
% o NAV armed minimum reached while in NAV Armed Initial state

% o NAV track condition met while in NAV Armed Long Enough state
..........................................................................

Indirect_Mode_Change?(s,e): bool =

Overspeed_Start?(e) &
NOT (CUES?(state(FD(s)))) QR

NAV_Armed_Long_Enough?(e) &
ARMED INITIAL?(state(NAV(LATERAL(s)))) CR

NAV_Track_Cond_Met_Event?(e) &

ARMED_LONG_ENOUGH?(state(NAV(LATERAL(s))))

..........................................................................

% Lemma used to ensure all indirect mode changes are known
..........................................................................

No_Unknown_Indirect_Mode Changes: L_

Valid State(s) &

NOT Crew_Input?(e) &

NOT Indirect_Mode_Change?(s,e) => NOT Mode_Change?(s,e)

END Indirect_Mode_Changes

Figure 39 - Ignored Crew Inputs

The last would cause a change from the ARMED to TRACK state of NAV mode when the

navigation source is captured.

As was done for ignored crew inputs, we define a predicate that enumerates the indirect mode

changes and create a new lemma to be proven:

No_Unknown_Indirect_Mode_Changes: LEMMA

Valid_State(s) &

NOT Crew_Input?(e) &

NOT Indirect_Mode_Change?(_,e} => NOT Mode_Change?(s,e)

More indirect mode changes will be introduced as the PVS model is expanded. This lemma will

make it simple to maintain an explicit list of all indirect mode changes.

52



Chapter 7

Conclusions and Future Directions

7.1 Conclusions

This project has explored ways to detect mode confusion through deeper scrutiny of the behavior

of the automation. This approach makes use of two complementary strategies. The first is to

create a clear, executable model of the automation, connect it to a simulation of the flight deck,
and use this combination to review of the behavior of the automation and the man-machine

interface with engineers, the pilots, and experts in human factors. The second is to conduct

mathematical analyses of the model. In addition, the models and visualizations are consistent

with an architecture that supports a product family approach to the development of Flight

Guidance Systems.

7.1.1 Visualization of the Automation

Creating a clear model of the automation that can be connected to a simulation of the flight deck

and executed has several benefits. One of the most important is to provide a common focus that

facilitates discussion between pilots, experts in human factors, and the system designers. Chapter

4 attempts to illustrate the value of this with a few examples. Unfortunately, static examples

cannot really convey the utility of stepping through the simulation with an audience of experts

from different disciplines. Our experiences to date have shown that, if anything, we

underestimated the power of this technique. In every demonstration, the visualization has

generated vigorous, positive debate between these groups.

A secondary benefit is to force the development and commitment to a high level design of the

automation. It is our belief that this leads naturally to simpler systems. In projects developed

without such a vision, design choices may be based on local concerns, such as fixing the

immediate problem at hand or achieving a certain level of performance, and this tends to result in

unnecessary complexity that is confusing to both the users and developers of the system.

Moreover, this complexity tends to grow as the system evolves over time. Having a clear, high

level model of the automation encourages the developers (and customers) to make changes

consistent with this model as time progresses.

We do not yet know if a dynamic, high level model of the automation would be of value during

training of the flight crew. The few times we have demonstrated the simulation to pilots, they

have tended to focus on the details of the particular flight control system and have been

noncommittal to its potential for use during training. We suspect that they would be much more
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interestedin the simulationif it describedan actualair]_lanethey fly rather than the example
describedin [15].

Onebenefitwehadnot anticipatedatthestartof theproj_ct wasthevalueof creatingamodelof
the automationspecificallytailored for conveyingan aceuratementalmodelof the automation.
Early in theproject,it becameclearthatafull executablespecificationof theautomationwasnot
appropriatefor conveyinga mentalmodelof the automa:ion.Instead,we focusedon creatinga
visualizationof the automation(Figure 5) that conveye_-!what we felt was the most relevant
information.While this modelwas atrue abstractionof the automation (i.e., every property of

the model was also a property of the automation), it left out many details that would be needed to

actually implement the mode logic in order to not obscure the key ideas. As our experience with

the model grew, we began to realize that there might be additional information that could be

incorporated into the visualization to help convey the appropriate mental model. For example,

one reviewer suggested coloring the transitions last executed a different color from the others.

7.1.2 Automated Analysis of the Model

At the start of the project, it was not clear how useful automated analyses, especially using the

PVS theorem prover, would be in detecting sources of mode confusion. However, as the project

progressed, we found ourselves relying more upon the PVS models and our ability to prove

properties and less upon the executable ObjecTime models and the visualizations.

As described in Section 4.1, our goal of adopting an archi:ecture for a family of Flight Guidance

Systems lead naturally to a specification consisting of many, small, reusable components. The

ability to prove key relationships between these compon,;nts, such as only one lateral mode is

active at a time (Section 6.1), was very helpful. Component based development (and

specification) appears to be on the rise as companies try to find ways to reduce costs through

systematic reuse and product family development. While tlais makes specification of the smaller

components simpler, it increases the need to verify properties of the overall system. This

suggests that component based approaches, including 1hose found in many object-oriented

methods, increase rather than decrease the need for formal analysis.

We found that combining the proofs of the key relationships along with the proofs of many

simple properties provided us with a valuable regression _uite. After making any change to the

model, such as adding a new mode, we routinely ran the entire suite of proofs. More often than

not, one or more proofs would no longer go through to completion. This then led us to inspect

the model to determine if that property should still be true and if so, why it no longer held. This

ability to automatically check for behavior that we would aormally check manually was an easy

way to maintain a high level of confidence in our model.

Using PVS to detect sources of mode confusion was one o:_the most novel aspects of the project.

Using PVS to find all states in which crew inputs are ignored (Section 6.3.2) and all indirect

mode changes (Section 6.3.3) illustrates to how a wide variety of sources of mode confusion can

be detected in such models. The central question here is which potential sources of mode

confusion can be described formally. For example, it is net clear how the notion of inconsistent
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behavior can be stated formally, but in Section 6.3.1 we discussed how a few simple forms of
inconsistent behavior can be formalized. We believe there is room for much more work in this

area.

7.1.3 Support for Product Families

It is notable that the ObjecTime models, the visualizations of the mode logic, and the PVS

models are all consistent with a product family architecture designed to accommodate the most

important variations found in Flight Guidance Systems, the configuration of modes installed on

the aircraft. The architecture described in Section 4.1 and that described in [15] are considerably

different, even though their overall behavior is similar. It is our belief that the architecture

described here not only supports product family variations better, but is a clearer and more

intuitive representation of the mode logic.

We find it intriguing that the same architecture can support both a clear mental model of the

automation and product family variations. At least on the surface, there is no obvious connection

between these two goals. However, if most variations result from the different ways in which a

product is used in its environment, it may be that the simplest mental model is naturally

compatible with an architecture that supports these variations. In this one example, that seems to
be the case.

In any case, if complex systems are to be affordable, planning for change and reuse has to play a

larger role in the future, and the simplest way to achieve this is by developing an architecture for

an entire family of products. Since a mental model of the automation must be an abstraction of

the actual implementation, i.e., every property of the model must also be true of the

implementation, it is encouraging that the goals of providing a clear mental model and a product

family architecture do not appear to be in conflict.

In contrast, the architecture described in Section 4.1 did make the proofs more difficult to

complete. However, this could always be overcome by first proving lemmas about the overall

system state that could then be used in the main proofs.

7.2 Future Directions

There are several areas for future work. These include extending the existing models with more

modes, developing more analyses for mode confusion, integrating the properties of flight control

laws into the models, investigating alternative architectures for the FGS, extensions to the

visualization to convey an accurate mental model of the automation, and making extensions to

PVS to simplify modeling.

7.2.1 Extending the Models

Only part of the mode logic described in the CoRE FGS specification [15] was modeled in Phase

I. In particular, the complex interactions between Vertical Approach and the other modes,
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especially lateral Approach, were not completed. Altitude Select mode has not yet been modeled,

precisely because it is one of the more complex vertical modes that imposes several constraints

between it and the other vertical modes. Even in the modes currently modeled, not all the

constraints between them have been specified. For example, the constraint that the system can be

in lateral Go Around mode if and only if it is in vertical Go Around mode is missing. All of these
are areas for further work.

Beyond this, the original CoRE FGS specification did not include the complex vertical
navigation modes found in modern Flight Guidance Systems. These are known to be one of the

main sources of mode confusion [9]. Extending the model with modes beyond those in CoRE
specification is another area for further work.

7.2.2 Extending the Analyses

In [13], the authors identify six common sources of mode confusion. In Section 6.3 we attempted
to formally state of few of these and use the PVS prover to detect instances of them in our

models. However, much more work remains to be done in this area. It should be possible to

formally characterize many more potential sources of mode confusion and search for them using
automated tools.

7.2.3 Integration of Flight Control Laws

The models described here do not include the flight control laws that actually generate the flight

guidance commands. Incorporating this information into the models may be necessary to

investigate some forms of mode confusion. The crash ,af an Airbus A330-322 in Toulouse,

France on 6/30/1994 illustrates this claim [2]. During a flight test of a simulated engine failure,

an unexpected mode transition to altitude acquisition (ALT*) occurred. Pitch protection was not
provided in ALT* mode, although it was present in Ill of the other modes. Detection of

inconsistent behavior such as this will require elaboratior of the basic properties of the control
laws in addition to the mode structure.

7.2.4 Investigation of Alternative Architectures

The architecture for the models presented in this report hzve assumed that the coupling between
the lateral and vertical guidance modes is minimal. However, some lateral and vertical modes are

more closely coupled than others. For example, Section 4.2 describes how the lateral and vertical

Approach modes are closely synchronized. In some aircr_ ft, the lateral and vertical Go Around

are effectively a single mode since if either is active, the otaer must also be active.

As discussed in Section 2.1, IA. A. Lambregts, FAA National Resource Specialist for Advanced

Controls, argues that much of the complexity of the flight deck derives from the independent

design of the autopilot and the autothrottle [ 11 ]. Address: ng these concerns could require both

integration of the properties of the flight control laws and the investigation of alternative
architectures.
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7.2.5 Visualization of the Automation

In Section 7.1.1 we discussed the unanticipated benefit of creating a visualization of the

automation specifically tailored for conveying an accurate mental model of the automation. Not

only did we decide that there was value in leaving some information out of the visualization in

order to not obscure the main points, but that there was value in including some information that

would not normally be included in a requirements or design model. Precisely what information

should be omitted or included in the visualization to best convey a useful mental model of the

automation is yet another topic for future work.

7.2.6 Extensions to PVS

We occasionally found the goals of creating a product family architecture and specifying the

mode logic in PVS to be in conflict. While specification of the simpler components, such as

Simple_Guidance and Arming_Guidance, was straightforward, the "glue" theories such

as Lateral_Guidance, Vertical_Guidance, and Flight_Guidance were much

more difficult. We attribute much of this to the lack of domain specific constructs for

communication between components. For example, notations such as ObjecTime [21] and SCR

[7] provide explicit constructs for communication between components and determining the

order in which events are processed. Since PVS is a general purpose notation, comparable

capabilities had to be explicitly constructed in the glue theories. For example, our use of events

and signals is a rudimentary communications mechanism between the components of the FGS.

Developing a reusable infrastructure in PVS to facilitate assembling component specifications

into an overall system specification, much as was done in [19] for SCR, is another area we would

like to investigate.

To achieve a product family architecture, the FGS model makes extensive use of information

hiding. For example, the states of a mode, which states are active, and the transitions between

states are encapsulated in the Simplified_Guidance and Arming_Guidance theories.

At each level, the synchronization between components is specified in to the parent component

to ensure that siblings had no information about their peers. However, all of this was done

implicitly. In Phase II, we would like to investigate if the information hiding capabilities of PVS

can be used to enforce this explicitly.

The lack of state variables in PVS also made creating the models more difficult. In the FGS,

system state was modeled as a record structure that mirrors the FGS architecture. Evaluation of a

system function also mirrors the FGS architecture, with a function in a component recursively

calling functions in its child components. At each step, the appropriate component of state is

extracted and passed as a parameter to the child function. If the function returns a state, the state

is reconstructed as the evaluation returns. While state variables would probably make proofs

more complicated, it would be much more natural and intuitive to embed state variables in the

appropriate components.
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